1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
Module first.
Polymorphic Record BAR (A:Type) :=
{ foo: A->Prop; bar: forall (x y: A), foo x -> foo y}.
Section A.
Context {A:Type}.
Set Printing Universes.
Hint Resolve bar.
Goal forall (P:BAR A) x y, foo _ P x -> foo _ P y.
intros.
eauto.
Qed.
End A.
End first.
Module firstbest.
Polymorphic Record BAR (A:Type) :=
{ foo: A->Prop; bar: forall (x y: A), foo x -> foo y}.
Section A.
Context {A:Type}.
Set Printing Universes.
Polymorphic Hint Resolve bar.
Goal forall (P:BAR A) x y, foo _ P x -> foo _ P y.
intros.
eauto.
Qed.
End A.
End firstbest.
Module second.
Axiom foo: Set.
Axiom foo': Set.
Polymorphic Record BAR (A:Type) :=
{ bar: foo' -> foo}.
Set Printing Universes.
Lemma baz@{i}: forall (P:BAR@{Set} nat), foo' -> foo.
eauto using bar.
Qed.
End second.
|