1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
Open Scope type_scope.
Notation idmap := (fun x => x).
Notation compose := (fun g f x => g (f x)).
Notation " g 'o' f " := (compose g f) (at level 40, left associativity) : core_scope.
(* Notation " g 'o' f " := (fun x => g (f x)) (at level 40, left associativity) : core_scope. *)
(* sigma { & } *)
(* Notation "{ x & P }" := (sigT (fun x => P)) (only parsing) : type_scope. *)
(* Notation "{ x : A & P }" := (sigT (A:=A) (fun x => P)) (only parsing) : type_scope. *)
Notation "( x ; y )" := (existT _ x y) : core_scope.
Notation "( x ; y ; z )" := (x ; (y ; z)) : core_scope.
Notation pr1 := (@projT1 _ _).
Notation pr2 := (@projT2 _ _).
Notation "x .1" := (@projT1 _ _ x) : core_scope.
Notation "x .2" := (@projT2 _ _ x) : core_scope.
Notation "'exists' x .. y , P"
:= (sigT (fun x => .. (sigT (fun y => P)) ..))
(at level 200, x binder, y binder, right associativity) : type_scope.
Notation "∃ x .. y , P"
:= (sigT (fun x => .. (sigT (fun y => P)) ..))
(at level 200, x binder, y binder, right associativity) : type_scope.
Definition prod A B := sigT (fun _ : A => B).
Notation "A * B" := (prod A B) (at level 40, left associativity) : type_scope.
Notation "A × B" := (sigT (fun _ : A => B)) (at level 90, right associativity) : type_scope.
Notation "A × B" := (prod A B) (at level 90, right associativity) : type_scope.
Definition pair {A B} : A -> B -> A × B := fun x y => (x; y).
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.
Definition fst {A B} : A × B -> A := @projT1 _ _.
Definition snd {A B} : A × B -> B := @projT2 _ _.
(* Notation " ( a | b ) " := (exist _ a b). (* subtype { | } *) *)
(* Notation "x ..1" := (@proj1_sig _ _ x) (at level 3, format "x '..1'"). *)
(* Notation "x ..2" := (@proj2_sig _ _ x) (at level 3, format "x '..2'"). *)
(* Notation " ( a , b ) " := (conj a b). *)
Definition iff (A B : Type) := (A -> B) × (B -> A).
Notation "A <-> B" := (iff A B)%type : type_scope.
Definition transitive_iff {A B C}
: A <-> B -> B <-> C -> A <-> C.
Proof.
intros H1 H2. split; firstorder.
Defined.
(* ********* Strict Eq ********* *)
Delimit Scope eq_scope with eq.
Open Scope eq_scope.
Bind Scope eq_scope with eq.
Definition Einverse {A : Type} {x y : A} (p : x = y) : y = x.
symmetry; assumption.
Defined.
Arguments Einverse {A x y} p : simpl nomatch.
Definition Econcat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with eq_refl, eq_refl => eq_refl end.
Arguments Econcat {A x y z} p q : simpl nomatch.
Notation "'E1'" := eq_refl : eq_scope.
Notation "p E@ q" := (Econcat p%eq q%eq) (at level 20) : eq_scope.
Notation "p ^E" := (Einverse p%eq) (at level 3, format "p '^E'") : eq_scope.
Definition Etransport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
match p with eq_refl => u end.
Arguments Etransport {A}%_type_scope P {x y} p%_eq_scope u : simpl nomatch.
Notation "p E# x"
:= (Etransport _ p x) (right associativity, at level 65, only parsing) : eq_scope.
Notation coe := (Etransport idmap).
Notation "f == g" := (forall x, f x = g x) (at level 70, no associativity) : type_scope.
Definition Eap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with eq_refl => eq_refl end.
Global Arguments Eap {A B}%_type_scope f {x y} p%_eq_scope.
Definition Econcat_Vp {A} {x y : A} (p : x = y)
: p^E E@ p = E1.
Proof.
now destruct p.
Defined.
(* subtypes ? *)
Axiom I : Type.
Axiom inf sup : I -> I -> I.
Axiom not : I -> I.
Axiom zero one : I.
Notation "0" := zero.
Notation "1" := one.
Axiom (zero_inf : forall {i}, inf 0 i = 0)
(inf_zero : forall {i}, inf i 0 = 0)
(one_inf : forall {i}, inf 1 i = i)
(inf_one : forall {i}, inf i 1 = i)
(not_not : forall {i}, not (not i) = i)
(not_zero : not 0 = 1).
Axiom Face : Type.
Axiom El : Face -> Type.
Axiom is0 is1 : I -> Face.
Axiom bot top : Face.
Axiom and or : Face -> Face -> Face.
Axiom (El_bot : El bot = False)
(El_top : El top = True)
(El_and : forall {φ φ'}, El (and φ φ') = @sigT (El φ) (fun _ => El φ'))
(El_or : forall {φ φ'}, El (or φ φ') = (El φ) + (El φ'))
(El_is0 : forall {i}, El (is0 i) = (i = 0))
(El_is1 : forall {i}, El (is1 i) = (i = 1))
(is1_zero : is1 0 = bot)
(is0_one : is0 1 = bot)
(is0_zero : is0 0 = top)
(is1_one : is1 1 = top)
(and_bot : forall {φ}, and φ bot = bot)
(and_top : forall {φ}, and φ top = φ)
.
Definition paths A (a b : A) := { p : I -> A & p 0 = a × p 1 = b }.
Notation " a ~ b " := (paths _ a b) (at level 30).
Tactic Notation "path" := simple refine (fun i => _; _; _).
Tactic Notation "path" ident(i) := simple refine (fun i => _; _; _).
Definition Contr A := { x : A & forall y, x ~ y }.
Definition partial A := { φ : Face & El φ -> A }.
Definition empty {A} : partial A.
Admitted.
Definition Etransport_pp {A : Type} (P : A -> Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) :
p E@ q E# u = q E# p E# u.
Admitted.
Definition extends {A} (u : partial A) (a : A)
:= forall x, u.2 x = a.
Definition Contr' A
:= forall u : partial A, exists a, extends u a.
Definition Contr'_Contr A : Contr' A -> Contr A.
intro H. pose (x := (H empty).1). exists x.
intro y. path i.
- refine (H (or (is0 i) (is1 i); _)).1.
refine (_ o coe El_or). apply sum_rect; intros _. exact x. exact y.
- cbn. match goal with
| |- (H ?X).1 = _ => set X
end.
etransitivity. symmetry; unshelve eapply (H s).2.
+ unfold s; cbn. refine (coe El_or^E _). left.
refine (coe _ Logic.I). exact (Eap El is0_zero E@ El_top)^E.
+ subst s; cbn. rewrite <- Etransport_pp.
rewrite Econcat_Vp. reflexivity.
- cbn. match goal with
| |- (H ?X).1 = _ => set X
end.
etransitivity. symmetry; unshelve eapply (H s).2.
+ unfold s; cbn. refine (coe El_or^E _). right.
refine (coe _ Logic.I). exact (Eap El is1_one E@ El_top)^E.
+ subst s; cbn. rewrite <- Etransport_pp.
rewrite Econcat_Vp. reflexivity.
Defined. (* stack overflow *)
|