1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
Module Foo.
Definition binary A := A -> A -> Prop.
Definition inter A (R1 R2 : binary A): binary A :=
fun (x y:A) => R1 x y /\ R2 x y.
End Foo.
Module Simple_sparse_proof.
Parameter node : Type.
Parameter graph : Type.
Parameter has_edge : graph -> node -> node -> Prop.
Implicit Types x y z : node.
Implicit Types G : graph.
Parameter mem : forall A, A -> list A -> Prop.
Axiom mem_nil : forall x, mem node x nil = False.
Definition notin (l: list node): node -> node -> Prop :=
fun x y => ~ mem node x l /\ ~ mem node y l.
Definition edge_notin G l : node -> node -> Prop :=
Foo.inter node (has_edge G) (notin l).
#[export] Hint Unfold Foo.inter notin edge_notin : rel_crush.
Lemma edge_notin_nil G : forall x y, edge_notin G nil x y <-> has_edge G x y.
Proof.
intros. autounfold with rel_crush. rewrite !mem_nil. tauto.
Qed.
End Simple_sparse_proof.
|