1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
From Coq Require Import Setoid.
Lemma test {A}
(lookup : list A -> nat -> option A)
(opA : option A -> option A -> option A)
(opL : list A -> list A -> list A)
(val : option A -> Prop) :
(forall l1 l2 (i : nat), lookup (opL l1 l2) i = opA (lookup l1 i) (lookup l2 i)) ->
forall l1 l2, (forall i : nat, val (lookup (opL l1 l2) i)) -> forall i : nat, val (lookup l1 i).
Proof.
intros list_lookup_op l1 l2.
(* setoid_rewrite list_lookup_op. Undo. *)
#[export] Hint Mode Reflexive ! ! : typeclass_instances.
setoid_rewrite list_lookup_op.
Abort.
(* Minimized bug from math-comp*)
Module MathComp.
(* File reduced by coq-bug-finder from original input, then from 4170 lines to 77 lines, then from 96 lines to 1135 lines, then from 1139 lines to 101 lines, then from 119 lines to 516 lines, then from 520 lines to 108 lines, then from 123 lines to 158 lines, then from 162 lines to 108 lines, then from 121 lines to 253 lines, then from 257 lines to 109 lines, then from 113 lines to 109 lines *)
(* coqc version 8.14+alpha compiled with OCaml 4.12.0
coqtop version 8.14+alpha *)
Axiom proof_admitted : False.
Tactic Notation "admit" := abstract case proof_admitted.
Require Coq.ssr.ssreflect.
Export Coq.ssr.ssreflect.
Global Set Asymmetric Patterns.
Require Coq.ssr.ssrbool.
Require Coq.NArith.BinNat.
Export Coq.ssr.ssrfun.
Export Coq.ssr.ssrbool.
Definition PredType : forall T pT, (pT -> pred T) -> predType T.
exact PredType || exact mkPredType.
Defined.
Arguments PredType [T pT] toP.
Set Implicit Arguments.
Unset Strict Implicit.
Module Export Equality.
Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).
Structure mixin_of T := Mixin {op : rel T; _ : axiom op}.
Notation class_of := mixin_of (only parsing).
Section ClassDef.
Structure type := Pack {sort; _ : class_of sort}.
Local Coercion sort : type >-> Sortclass.
Variables (T : Type) (cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
End ClassDef.
Coercion sort : type >-> Sortclass.
Notation eqType := type.
Definition eq_op T := Equality.op (Equality.class T).
Notation "x == y" := (eq_op x y)
(at level 70, no associativity) : bool_scope.
Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x).
Declare Scope seq_scope.
Open Scope seq_scope.
Notation seq := list.
Infix "::" := cons : seq_scope.
Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope.
Section Sequences.
Variable T : Type.
Implicit Type s : seq T.
Definition behead s := if s is _ :: s' then s' else [::].
End Sequences.
Section EqSeq.
Variables (n0 : nat) (T : eqType) (x0 : T).
Fixpoint mem_seq (s : seq T) :=
if s is y :: s' then xpredU1 y (mem_seq s') else xpred0.
Definition seq_eqclass := seq T.
Coercion pred_of_seq (s : seq_eqclass) : {pred T} := mem_seq s.
Canonical seq_predType := PredType (pred_of_seq : seq T -> pred T).
Lemma mem_head x s : x \in x :: s.
admit.
Defined.
Lemma mem_behead s : {subset behead s <= s}.
admit.
Defined.
Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true.
End EqSeq.
Section Map.
Variables (n0 : nat) (T1 : Type) (x1 : T1).
Variables (T2 : Type) (x2 : T2) (f : T1 -> T2).
Fixpoint map s := if s is x :: s' then f x :: map s' else [::].
End Map.
Parameters (n0 : nat) (T1 : eqType) (x1 : T1).
Parameters (T2 : eqType) (x2 : T2) (f : T1 -> T2).
Lemma mapP s y : reflect (exists2 x, x \in s & y = f x) (y \in map f s).
admit.
Defined.
Lemma map_inj_in_uniq s : {in s &, injective f} -> uniq (map f s) = uniq s.
Proof.
elim: s => //= x s IHs //= injf; congr (~~ _ && _).
apply/mapP/idP=> [[y sy /injf] | ]; last by exists x.
rewrite mem_head.
rewrite mem_behead // => -> //.
Abort.
End Equality.
End MathComp.
Module Iris.
(* File reduced by coq-bug-finder from original input, then from 1726 lines to 63 lines, then from 117 lines to 133 lines, then from 137 lines to 64 lines, then from 115 lines to 134 lines, then from 138 lines to 69 lines, then from 96 lines to 750 lines, then from 752 lines to 101 lines, then from 126 lines to 357 lines, then from 361 lines to 116 lines, then from 140 lines to 190 lines, then from 194 lines to 125 lines, then from 148 lines to 1547 lines, then from 1547 lines to 152 lines, then from 156 lines to 152 lines *)
(* coqc version 8.14+alpha compiled with OCaml 4.12.0
coqtop version 8.14+alpha *)
Axiom proof_admitted : False.
Tactic Notation "admit" := abstract case proof_admitted.
Require Coq.ssr.ssreflect.
Require Coq.Lists.List.
Require Coq.Unicode.Utf8.
Module Export stdpp_DOT_base.
Module Export stdpp.
Module Export base.
Export Coq.Classes.Morphisms.
Export Coq.Setoids.Setoid.
Export Coq.Unicode.Utf8.
Global Generalizable All Variables.
Declare Scope stdpp_scope.
Global Open Scope stdpp_scope.
Notation "(=)" := eq (only parsing) : stdpp_scope.
Notation "(=@{ A } )" := (@eq A) (only parsing) : stdpp_scope.
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : stdpp_scope.
Class Decision (P : Prop) := decide : {P} + {¬P}.
Global Arguments decide _ {_} : simpl never, assert.
Class RelDecision {A B} (R : A → B → Prop) :=
decide_rel x y :: Decision (R x y).
Notation EqDecision A := (RelDecision (=@{A})).
Class Inj {A B} (R : relation A) (S : relation B) (f : A → B) : Prop :=
inj x y : S (f x) (f y) → R x y.
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y → ¬R y x.
admit.
Defined.
End base.
End stdpp.
End stdpp_DOT_base.
Module Export stdpp_DOT_decidable.
Module Export stdpp.
Module Export decidable.
Notation cast_if S := (if S then left _ else right _).
Program Definition inj_eq_dec `{EqDecision A} {B} (f : B → A)
`{!Inj (=) (=) f} : EqDecision B := λ x y, cast_if (decide (f x = f y)).
Solve Obligations with firstorder congruence.
End decidable.
End stdpp.
End stdpp_DOT_decidable.
Module Export stdpp_DOT_tactics.
Module Export stdpp.
Module Export tactics.
Ltac fast_done :=
solve
[ eassumption
| symmetry; eassumption
| apply not_symmetry; eassumption
| reflexivity ].
Ltac done :=
solve
[ repeat first
[ fast_done
| solve [trivial]
| progress intros
| solve [symmetry; trivial]
| solve [apply not_symmetry; trivial]
| discriminate
| contradiction
| split
| match goal with H : ¬_ |- _ => case H; clear H; fast_done end ]
].
End tactics.
End stdpp.
End stdpp_DOT_tactics.
Module Export stdpp.
Module Export prelude.
Export stdpp.tactics.
End prelude.
Export Coq.ssr.ssreflect.
Export stdpp.prelude.
Set Primitive Projections.
Class Dist A := dist : nat → relation A.
Notation "x ≡{ n }≡ y" := (dist n x y)
(at level 70, n at next level, format "x ≡{ n }≡ y").
Notation NonExpansive f := (∀ n, Proper (dist n ==> dist n) f).
Record OfeMixin A `{Equiv A, Dist A} := {
mixin_equiv_dist (x y : A) : x ≡ y ↔ ∀ n, x ≡{n}≡ y;
mixin_dist_equivalence n : Equivalence (@dist A _ n);
mixin_dist_S n (x y : A) : x ≡{S n}≡ y → x ≡{n}≡ y
}.
Structure ofe := Ofe {
ofe_car :> Type;
ofe_equiv : Equiv ofe_car;
ofe_dist : Dist ofe_car;
ofe_mixin : OfeMixin ofe_car
}.
Global Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Global Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Section ofe_mixin.
Context {A : ofe}.
Implicit Types x y : A.
Lemma equiv_dist x y : x ≡ y ↔ ∀ n, x ≡{n}≡ y.
admit.
Defined.
Global Instance dist_equivalence n : Equivalence (@dist A _ n).
admit.
Defined.
End ofe_mixin.
Record chain (A : ofe) := {
chain_car :> nat → A;
chain_cauchy n i : n ≤ i → chain_car i ≡{n}≡ chain_car n
}.
Program Definition chain_map {A B : ofe} (f : A → B)
`{!NonExpansive f} (c : chain A) : chain B :=
{| chain_car n := f (c n) |}.
Next Obligation.
admit.
Defined.
Notation Compl A := (chain A%type → A).
Class Cofe (A : ofe) := {
compl : Compl A;
conv_compl n c : compl c ≡{n}≡ c n;
}.
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A → B) c `(NonExpansive f) :
compl (chain_map f c) ≡ f (compl c).
Proof.
apply equiv_dist=>n.
rewrite !conv_compl.
Abort.
End stdpp.
End Iris.
Module SSr.
(* File reduced by coq-bug-finder from original input, then from 451 lines to 35 lines, then from 99 lines to 1013 lines, then from 1016 lines to 85 lines, then from 99 lines to 206 lines, then from 209 lines to 101 lines, then from 114 lines to 360 lines, then from 363 lines to 185 lines, then from 198 lines to 330 lines, then from 334 lines to 185 lines, then from 189 lines to 185 lines *)
(* coqc version 8.14+alpha compiled with OCaml 4.12.0
coqtop version 8.14+alpha *)
Axiom proof_admitted : False.
Tactic Notation "admit" := abstract case proof_admitted.
Require Coq.ssr.ssreflect.
Export Coq.ssr.ssreflect.
Require Coq.NArith.BinNat.
Set Implicit Arguments.
Unset Strict Implicit.
Module Export Real.
Record structure : Type := Structure {
val : Type;
set := val -> Prop;
rel := val -> set;
le : rel;
sup : set -> val;
add : val -> val -> val;
zero : val;
opp : val -> val;
mul : val -> val -> val;
one : val;
inv : val -> val
}.
Definition eq R : rel R := fun x y => le x y /\ le y x.
Definition ub R (E : set R) : set R := fun z => forall y, E y -> le y z.
Definition down R (E : set R) : set R := fun x => exists2 y, E y & le x y.
Definition nonempty R (E : set R) : Prop := exists x, E x.
Definition has_ub R (E : set R) : Prop := nonempty (ub E).
Definition has_sup R (E : set R) : Prop := nonempty E /\ has_ub E.
Record axioms R : Prop := Axioms {
le_reflexive (x : val R) :
le x x;
le_transitive (x y z : val R) :
le x y -> le y z -> le x z;
sup_upper_bound (E : set R) :
has_sup E -> ub E (sup E);
sup_total (E : set R) (x : val R) :
has_sup E -> down E x \/ le (sup E) x;
add_monotone (x y z : val R) :
le y z -> le (add x y) (add x z);
add_commutative (x y : val R) :
eq (add x y) (add y x);
add_associative (x y z : val R) :
eq (add x (add y z)) (add (add x y) z);
add_zero_left (x : val R) :
eq (add (zero R) x) x;
add_opposite_right (x : val R) :
eq (add x (opp x)) (zero R);
mul_monotone x y z :
le (zero R) x -> le y z -> le (mul x y) (mul x z);
mul_commutative (x y : val R) :
eq (mul x y) (mul y x);
mul_associative (x y z : val R) :
eq (mul x (mul y z)) (mul (mul x y) z);
mul_distributive_right (x y z : val R) :
eq (mul x (add y z)) (add (mul x y) (mul x z));
mul_one_left (x : val R) :
eq (mul (one R) x) x;
mul_inverse_right (x : val R) :
~ eq x (zero R) -> eq (mul x (inv x)) (one R);
one_nonzero : ~ eq (one R) (zero R)
}.
Record model : Type := Model {
model_structure : structure;
model_axioms : axioms model_structure
}.
Definition image R S (phi : val R -> val S) (E : set R) (y : val S) :=
exists2 x, E x & eq y (phi x).
Record morphism R S (phi : val R -> val S) : Prop := Morphism {
morph_le x y :
le (phi x) (phi y) <-> le x y;
morph_sup (E : set R) :
has_sup E -> eq (phi (sup E)) (sup (image phi E));
morph_add x y :
eq (phi (add x y)) (add (phi x) (phi y));
morph_zero :
eq (phi (zero R)) (zero S);
morph_opp x :
eq (phi (opp x)) (opp (phi x));
morph_mul x y :
eq (phi (mul x y)) (mul (phi x) (phi y));
morph_one :
eq (phi (one R)) (one S);
morph_inv x :
~ eq x (zero R) -> eq (phi (inv x)) (inv (phi x))
}.
Coercion val : structure >-> Sortclass.
Coercion model_structure : model >-> structure.
Delimit Scope real_scope with Rval.
Local Open Scope real_scope.
Arguments add {R} x%_Rval y%_Rval : rename, simpl never.
Reserved Notation "x == y" (at level 70, no associativity).
Notation "x <= y" := (le x y) : real_scope.
Notation "x + y" := (add x y) : real_scope.
Notation "0" := (zero _) : real_scope.
Notation "x == y" := (eq x y) : real_scope.
Notation "x >= y" := (y <= x) (only parsing) : real_scope.
Notation "x < y" := (~ (x >= y)) : real_scope.
Notation "x <= y <= z" := (x <= y /\ y <= z) : real_scope.
Import Coq.Classes.Morphisms.
Section RealLemmas.
Variable R : Real.model.
Implicit Types x y z : R.
Local Notation eqR :=(@Real.eq (Real.model_structure R)) (only parsing).
Lemma leRR x : x <= x.
admit.
Defined.
Lemma ltRW x y : x < y -> x <= y.
admit.
Defined.
Lemma eqR_refl x : x == x.
admit.
Defined.
Lemma eqR_sym x y : x == y -> y == x.
admit.
Defined.
Lemma eqR_trans x y z : x == y -> y == z -> x == z.
admit.
Defined.
Add Parametric Relation : R eqR
reflexivity proved by eqR_refl
symmetry proved by eqR_sym
transitivity proved by eqR_trans
as real_equality.
Instance addR_Proper : Proper (eqR ==> eqR ==> eqR) Real.add.
admit.
Defined.
Lemma add0R x : 0 + x == x.
admit.
Defined.
End RealLemmas.
#[export] Hint Resolve eqR_refl leRR ltRW.
#[export] Existing Instance real_equality.
#[export] Existing Instance addR_Proper.
Section RealMorph.
Variables (R S : Real.structure) (phi : R -> S).
Hypothesis phiP : Real.morphism phi.
Lemma Rmorph_eq x y : phi x == phi y <-> x == y.
Proof.
by rewrite /Real.eq !Real.morph_le.
Qed.
End RealMorph.
Parameters (R : Real.structure) (S : Real.model) (phi : R -> S).
Axiom phiP : Real.morphism phi.
Implicit Types (x y z : R) (E : Real.set R).
Definition phi_eq := Rmorph_eq phiP.
Definition phiD := Real.morph_add phiP.
Definition phi0 := Real.morph_zero phiP.
Lemma Radd0 x : 0 + x == x.
Proof.
by rewrite -phi_eq phiD phi0 add0R.
Abort.
End Real.
End SSr.
|