1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
Require Coq.Program.Program.
Require Coq.Classes.CMorphisms.
Require Setoid.
Export Coq.Program.Program.
Delimit Scope category_theory_scope with category_theory.
Open Scope category_theory_scope.
Export Coq.Classes.CMorphisms.
Notation "∀ x .. y , P" := (forall x, .. (forall y, P) ..)
(at level 200, x binder, y binder, right associativity) :
category_theory_scope.
Notation "x → y" := (x -> y)
(at level 99, y at level 200, right associativity): category_theory_scope.
Class Setoid A := {
equiv : crelation A;
setoid_equiv :: Equivalence equiv
}.
Notation "f ≈ g" := (equiv f g) (at level 79) : category_theory_scope.
Reserved Infix "~>" (at level 90, right associativity).
Class Category := {
obj : Type;
uhom := Type : Type;
hom : obj -> obj -> uhom where "a ~> b" := (hom a b);
homset :: ∀ X Y, Setoid (X ~> Y);
id {x} : x ~> x;
compose {x y z} (f: y ~> z) (g : x ~> y) : x ~> z
where "f ∘ g" := (compose f g);
compose_respects x y z ::
Proper (equiv ==> equiv ==> equiv) (@compose x y z);
dom {x y} (f: x ~> y) := x;
cod {x y} (f: x ~> y) := y;
id_left {x y} (f : x ~> y) : id ∘ f ≈ f;
id_right {x y} (f : x ~> y) : f ∘ id ≈ f;
comp_assoc {x y z w} (f : z ~> w) (g : y ~> z) (h : x ~> y) :
f ∘ (g ∘ h) ≈ (f ∘ g) ∘ h;
comp_assoc_sym {x y z w} (f : z ~> w) (g : y ~> z) (h : x ~> y) :
(f ∘ g) ∘ h ≈ f ∘ (g ∘ h)
}.
Delimit Scope category_scope with category.
Delimit Scope object_scope with object.
Delimit Scope morphism_scope with morphism.
Notation "x ~> y" := (@hom _%category x%object y%object)
(at level 90, right associativity) : homset_scope.
Notation "f ∘ g" :=
(@compose _%category _%object _%object _%object f%morphism g%morphism)
: morphism_scope.
Coercion obj : Category >-> Sortclass.
Open Scope category_scope.
Open Scope homset_scope.
Open Scope morphism_scope.
#[warning="context-outside-section"] Context {C : Category}.
Class Isomorphism (x y : C) : Type := {
to :: x ~> y;
from : y ~> x;
iso_to_from : to ∘ from ≈ id;
iso_from_to : from ∘ to ≈ id
}.
Arguments to {x y} _.
Arguments from {x y} _.
Arguments iso_to_from {x y} _.
Arguments iso_from_to {x y} _.
Infix "≅" := Isomorphism (at level 91) : category_scope.
Global Program Instance iso_id {x : C} : x ≅ x := {
to := id;
from := id
}.
Next Obligation.
now rewrite id_left.
Qed.
Next Obligation.
now rewrite id_left.
Qed.
Global Program Definition iso_sym {x y : C} `(f : x ≅ y) : y ≅ x := {|
to := from f;
from := to f;
iso_to_from := iso_from_to f;
iso_from_to := iso_to_from f
|}.
Global Program Definition iso_compose {x y z : C} `(f : y ≅ z) `(g : x ≅ y) :
x ≅ z := {|
to := to f ∘ to g;
from := from g ∘ from f
|}.
Next Obligation.
rewrite <- comp_assoc.
rewrite (comp_assoc (to g)).
rewrite iso_to_from.
rewrite id_left.
apply iso_to_from.
Defined.
Next Obligation.
rewrite <- comp_assoc.
rewrite (comp_assoc (from f)).
rewrite iso_from_to.
rewrite id_left.
apply iso_from_to.
Defined.
Global Program Instance isomorphism_equivalence : Equivalence Isomorphism := {
Equivalence_Reflexive := @iso_id;
Equivalence_Symmetric := @iso_sym;
Equivalence_Transitive := fun _ _ _ g f => iso_compose f g
}.
Lemma iso_compose' {x y z : C} `(f : y ≅ z) `(g : x ≅ y) : x ≅ z.
Proof.
rewrite g.
Abort.
|