1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
Universe u v w.
Inductive invertible {X:Type@{u}} {Y:Type} (f:X->Y) : Prop := .
Inductive FiniteT : Type -> Prop :=
| add_finite: forall T:Type@{v}, FiniteT T -> FiniteT (option T)
| bij_finite: forall (X:Type@{w}) (Y:Type) (f:X->Y), FiniteT X ->
invertible f -> FiniteT Y.
Set Printing Universes.
Axiom a : False.
(*
Constraint v <= u.
Constraint v <= w.
*)
Lemma finite_subtype: forall (X:Type) (P:X->Prop),
FiniteT X -> (forall x:X, P x \/ ~ P x) ->
FiniteT {x:X | P x}.
Proof.
intros.
induction H.
destruct (H0 None).
elim a.
pose (g := fun (x:{x:T | P (Some x)}) =>
match x return {x:option T | P x} with
| exist _ x0 i => exist (fun x:option T => P x) (Some x0) i
end).
apply bij_finite with _ g.
apply IHFiniteT.
intro; apply H0.
elim a.
pose (g := fun (x:{x:X | P (f x)}) =>
match x with
| exist _ x0 i => exist (fun x:Y => P x) (f x0) i
end).
apply bij_finite with _ g.
apply IHFiniteT.
intro; apply H0.
elim a.
Qed.
|