1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
Set Printing Universes.
Inductive Foo@{i} (A:Type@{i}) : Type := foo : (Set:Type@{i}) -> Foo A.
Arguments foo {_} _.
Print Universes Subgraph (Foo.i).
Definition bar : Foo True -> Set := fun '(foo x) => x.
Definition foo_bar (n : Foo True) : foo (bar n) = n.
Proof. destruct n;reflexivity. Qed.
Definition bar_foo (n : Set) : bar (foo n) = n.
Proof. reflexivity. Qed.
Require Import Hurkens.
Inductive box (A : Set) : Prop := Box : A -> box A.
Definition Paradox : False.
Proof.
Fail unshelve refine (
NoRetractFromSmallPropositionToProp.paradox
(Foo True)
(fun A => foo A)
(fun A => box (bar A))
_
_
False
).
Abort.
|