1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
Lemma test
(R : nat -> Prop)
(_ : True)
(G : R 0)
(M : (exists n : nat, 0 = n) /\ True)
: True.
Proof.
destruct M as [[n K] _].
rewrite K in G.
exact I.
Qed.
Print test.
(* Used to be:
Anomaly "Uncaught exception Not_found."
Please report at http://coq.inria.fr/bugs/.
*)
Lemma test1
(_ : True)
(R : nat -> Prop)
(G : R 0)
(M : (exists n : nat, 0 = n) /\ True)
: True.
Proof.
destruct M as [[n K] _].
rewrite K in G.
exact I.
Qed.
Print test1.
(* Used to be:
Anomaly "Uncaught exception Retyping.RetypeError(0)."
Please report at http://coq.inria.fr/bugs/.
*)
|