1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
(* Here we give some functions that compute non-rational reals,
to measure the computation speed. *)
(* Expected time < 5.00s *)
Require Import QArith Qabs Qpower.
Require Import ConstructiveCauchyRealsMult.
Require Import Lqa.
Require Import Lia.
Local Open Scope CReal_scope.
(* We would need a shift instruction on positives to do this properly *)
Definition CReal_sqrt_Q_seq (q : Q) (n : Z) : Q
:= let (k,j) := q in
match k with
| Z0 => 0
| Z.pos i => match n with
| Z0
| Z.pos _ => Z.pos (Pos.sqrt (i*j)) # (j)
| Z.neg n' => Z.pos (Pos.sqrt (i*j*2^(2*n'))) # (j*2^n')
end
| Z.neg i => 0 (* unused *)
end.
Local Lemma Pos_pow_twice_r a b : (a^(2*b) = a^b * a^b)%positive.
Proof.
apply Pos2Z.inj.
rewrite Pos2Z.inj_mul.
do 2 rewrite Pos2Z.inj_pow.
rewrite Pos2Z.inj_mul.
apply Z.pow_twice_r.
Qed.
(* Approximation of the square root from below,
improves the convergence modulus. *)
Lemma CReal_sqrt_Q_le_below : forall (q : Q) (n : Z),
(0<=q)%Q -> (CReal_sqrt_Q_seq q n * CReal_sqrt_Q_seq q n <= q)%Q.
Proof.
intros q n Hqpos. destruct q as [k j]. unfold CReal_sqrt_Q_seq.
destruct k as [|i|i].
- apply Z.le_refl.
- destruct n as [|n|n].
+ pose proof (Pos.sqrt_spec (i * j)) as H. simpl in H.
destruct H as [H _].
unfold Qle, Qmult, Qnum, Qden.
rewrite <- Pos2Z.inj_mul, <- Pos2Z.inj_mul, <- Pos2Z.inj_mul.
apply Pos2Z.pos_le_pos. rewrite (Pos.mul_assoc i j j).
apply Pos.mul_le_mono_r; exact H.
+ pose proof (Pos.sqrt_spec (i * j)) as H. simpl in H.
destruct H as [H _].
unfold Qle, Qmult, Qnum, Qden.
rewrite <- Pos2Z.inj_mul, <- Pos2Z.inj_mul, <- Pos2Z.inj_mul.
apply Pos2Z.pos_le_pos. rewrite (Pos.mul_assoc i j j).
apply Pos.mul_le_mono_r; exact H.
+ pose proof (Pos.sqrt_spec (i * j * 2^(2*n))) as H. simpl in H.
destruct H as [H _].
unfold Qle, Qmult, Qnum, Qden.
rewrite <- Pos2Z.inj_mul, <- Pos2Z.inj_mul, <- Pos2Z.inj_mul.
apply Pos2Z.pos_le_pos. rewrite (Pos.mul_comm j (2^n)) at 2.
do 3 rewrite Pos.mul_assoc.
apply Pos.mul_le_mono_r.
simpl.
rewrite Pos_pow_twice_r in H at 3.
rewrite Pos.mul_assoc in H.
exact H.
- exact Hqpos.
Qed.
Lemma CReal_sqrt_Q_lt_above : forall (q : Q) (n : Z),
(0 <= q)%Q -> (q < ((CReal_sqrt_Q_seq q n + 2^n) * (CReal_sqrt_Q_seq q n + 2^n)))%Q.
Proof.
intros. destruct q as [k j]. unfold CReal_sqrt_Q_seq.
destruct k as [|i|i].
- ring_simplify.
setoid_rewrite <- Qpower_mult.
setoid_rewrite Qreduce_zero.
pose proof Qpower_0_lt 2 (n*2)%Z ltac:(lra).
lra.
- destruct n as [|n|n].
+ pose proof (Pos.sqrt_spec (i * j)). simpl in H0.
destruct H0 as [_ H0].
change (2^0)%Q with 1%Q.
unfold Qlt, Qplus, Qmult, Qnum, Qden.
rewrite Pos.mul_1_r, Z.mul_1_r, Z.mul_1_l.
repeat rewrite <- Pos2Z.inj_add, <- Pos2Z.inj_mul.
apply Pos2Z.pos_lt_pos.
rewrite Pos.mul_assoc.
apply Pos.mul_lt_mono_r.
apply (Pos.lt_le_trans _ _ _ H0).
apply Pos.mul_le_mono; lia.
+ pose proof (Pos.sqrt_spec (i * j)). simpl in H0.
destruct H0 as [_ H0].
rewrite Qpower_decomp_pos.
unfold Qlt, Qplus, Qmult, Qnum, Qden.
rewrite PosExtra.Pos_pow_1_r.
rewrite Pos.mul_1_r, Z.mul_1_r.
rewrite <- Pos2Z.inj_pow; do 2 rewrite <- Pos2Z.inj_mul; rewrite <- Pos2Z.inj_add.
apply Pos2Z.pos_lt_pos.
rewrite Pos.mul_assoc.
apply Pos.mul_lt_mono_r.
apply (Pos.lt_le_trans _ _ _ H0).
apply Pos.mul_le_mono;
pose proof Pos.le_1_l (2 ^ n * j)%positive; lia.
+ pose proof (Pos.sqrt_spec (i * j * 2 ^ (2 * n))). simpl in H0.
destruct H0 as [_ H0].
rewrite <- Pos2Z.opp_pos, Qpower_opp.
rewrite Qpower_decomp_pos.
rewrite <- Pos2Z.inj_pow, PosExtra.Pos_pow_1_r, Qinv_pos.
unfold Qlt, Qplus, Qmult, Qnum, Qden.
repeat rewrite Pos2Z.inj_mul.
ring_simplify.
replace (Z.pos i * Z.pos j ^ 2 * Z.pos (2 ^ n) ^ 4)%Z
with ((Z.pos i * Z.pos j * Z.pos (2 ^ n) ^ 2) * (Z.pos j * Z.pos (2 ^ n) ^ 2))%Z by ring.
replace (
Z.pos j ^ 3 * Z.pos (2 ^ n) ^ 2 +
2 * Z.pos j ^ 2 * Z.pos (2 ^ n) ^ 2 * Z.pos (Pos.sqrt (i * j * 2 ^ (2 * n))) +
Z.pos j * Z.pos (2 ^ n) ^ 2 * Z.pos (Pos.sqrt (i * j * 2 ^ (2 * n))) ^ 2)%Z
with (
(Z.pos j + Z.pos (Pos.sqrt (i * j * 2 ^ (2 * n))))^2 *
(Z.pos j * Z.pos (2 ^ n) ^ 2))%Z by ring.
repeat rewrite Pos2Z.inj_pow.
rewrite <- Z.pow_mul_r by lia.
repeat rewrite <- Pos2Z.inj_mul.
repeat rewrite <- Pos2Z.inj_pow.
repeat rewrite <- Pos2Z.inj_mul.
repeat rewrite <- Pos2Z.inj_add.
apply Pos2Z.pos_lt_pos.
rewrite (Pos.mul_comm n 2); change (2*n)%positive with (n~0)%positive.
apply Pos.mul_lt_mono_r.
apply (Pos.lt_le_trans _ _ _ H0).
apply Pos.mul_le_mono;
pose proof Pos.le_1_l (2 ^ n * j)%positive; lia.
- exfalso; unfold Qle, Z.le in H; simpl in H; exact (H eq_refl).
Qed.
Lemma CReal_sqrt_Q_pos : forall (q : Q) (n : Z),
(0 <= (CReal_sqrt_Q_seq q n))%Q.
Proof.
intros. unfold CReal_sqrt_Q_seq. destruct q, Qnum.
- apply Qle_refl.
- destruct n as [|n|n]; discriminate.
- apply Qle_refl.
Qed.
Lemma Qsqrt_lt : forall q r :Q,
(0 <= r -> q*q < r*r -> q < r)%Q.
Proof.
intros. destruct (Q_dec q r). destruct s. exact q0.
- exfalso. apply (Qlt_not_le _ _ H0). apply (Qle_trans _ (q * r)).
apply Qmult_le_compat_r. apply Qlt_le_weak, q0. exact H.
rewrite Qmult_comm.
apply Qmult_le_compat_r. apply Qlt_le_weak, q0.
apply (Qle_trans _ r _ H). apply Qlt_le_weak, q0.
- exfalso. rewrite q0 in H0. exact (Qlt_irrefl _ H0).
Qed.
Lemma CReal_sqrt_Q_cauchy :
forall q:Q, QCauchySeq (CReal_sqrt_Q_seq q).
Proof.
intro q. destruct q as [k j]. destruct k.
- intros n a b H H0.
change (Qabs _) with 0%Q.
apply Qpower_0_lt; reflexivity.
- assert (forall n a b, (b<=n)%Z ->
(CReal_sqrt_Q_seq (Z.pos p # j) a - CReal_sqrt_Q_seq (Z.pos p # j) b
< 2^n)%Q).
{ intros.
pose proof Qpower_0_lt 2 n eq_refl as Hpow.
rewrite <- (Qplus_lt_r _ _ (CReal_sqrt_Q_seq (Z.pos p # j) b)).
ring_simplify. apply Qsqrt_lt.
{ apply (Qle_trans _ (0+2^n)). lra.
apply Qplus_le_l. apply CReal_sqrt_Q_pos. }
apply (Qle_lt_trans _ (Z.pos p # j)).
{ apply CReal_sqrt_Q_le_below. discriminate. }
apply (Qlt_le_trans _ ((CReal_sqrt_Q_seq (Z.pos p # j) b + (2^b)) *
(CReal_sqrt_Q_seq (Z.pos p # j) b + (2^b)))).
{ apply CReal_sqrt_Q_lt_above. discriminate. }
apply (Qle_trans _ ((CReal_sqrt_Q_seq (Z.pos p # j) b + (2^n)) *
(CReal_sqrt_Q_seq (Z.pos p # j) b + (2^b)))).
{ apply Qmult_le_r.
- apply (Qlt_le_trans _ (0+(2^b))).
+ rewrite Qplus_0_l. apply Qpower_0_lt. reflexivity.
+ apply Qplus_le_l. apply CReal_sqrt_Q_pos.
- apply Qplus_le_r. apply Qpower_le_compat_l.
exact H. discriminate. }
apply Qmult_le_compat_nonneg.
- split.
+ pose proof CReal_sqrt_Q_pos (Z.pos p # j) b.
lra.
+ apply Qle_refl.
- split.
+ pose proof CReal_sqrt_Q_pos (Z.pos p # j) b.
pose proof Qpower_0_lt 2 b eq_refl as Hpowb.
lra.
+ apply Qplus_le_r.
apply Qpower_le_compat_l.
exact H. discriminate.
}
intros n a b H0 H1. apply Qabs_case.
intros. apply H, H1.
intros.
setoid_replace (- (CReal_sqrt_Q_seq (Z.pos p # j) a - CReal_sqrt_Q_seq (Z.pos p # j) b))%Q
with (CReal_sqrt_Q_seq (Z.pos p # j) b - CReal_sqrt_Q_seq (Z.pos p # j) a)%Q.
2: ring. apply H, H0.
- intros n a b H H0.
change (Qabs _) with 0%Q.
apply Qpower_0_lt; reflexivity.
Qed.
Definition CReal_sqrt_Q_scale (q : Q) : Z
:= ((QExtra.Qbound_lt_ZExp2 q + 1)/2)%Z.
Lemma CReal_sqrt_Q_bound : forall (q : Q),
QBound (CReal_sqrt_Q_seq q) (CReal_sqrt_Q_scale q).
Proof.
intros q k.
unfold CReal_sqrt_Q_scale.
rewrite Qabs_pos.
2: apply CReal_sqrt_Q_pos.
apply Qsqrt_lt.
1: apply Qpower_pos; discriminate.
destruct (Qlt_le_dec q 0) as [Hq|Hq].
- destruct q as [[|n|n] d].
+ discriminate Hq.
+ discriminate Hq.
+ reflexivity.
- apply (Qle_lt_trans _ _ _ (CReal_sqrt_Q_le_below _ _ Hq)).
rewrite <- Qpower_plus.
2: discriminate.
rewrite Z.add_diag, Z.mul_comm.
pose proof Zdiv.Zmod_eq (QExtra.Qbound_lt_ZExp2 q + 1) 2 eq_refl as Hmod.
assert (forall a b c : Z, c=b-a -> a=b-c)%Z as H by (intros a b c H'; rewrite H'; ring).
apply H in Hmod; rewrite Hmod; clear H Hmod.
apply (Qlt_le_trans _ _ _ (QExtra.Qbound_lt_ZExp2_spec q)).
apply Qpower_le_compat_l. 2: discriminate.
pose proof Z.mod_pos_bound (QExtra.Qbound_lt_ZExp2 q + 1)%Z 2%Z eq_refl.
lia.
Qed.
Definition CReal_sqrt_Q (q : Q) : CReal :=
{|
seq := CReal_sqrt_Q_seq q;
scale := CReal_sqrt_Q_scale q;
cauchy := CReal_sqrt_Q_cauchy q;
bound := CReal_sqrt_Q_bound q
|}.
Time Eval vm_compute in (seq (CReal_sqrt_Q 2) (-1000)%Z).
|