File: ParalITP_fail_on_qed.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (54 lines) | stat: -rw-r--r-- 869 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
(* Some boilerplate *)
Fixpoint fib n := match n with
  | O => 1
  | S m => match m with
    | O => 1
    | S o => fib o + fib m end end.

Ltac sleep n :=
  try (cut (fib n = S (fib n)); reflexivity).

(* Tune that depending on your PC *)
Let time := 10.


(* Beginning of demo *)

Section Demo.

Variable i : True.

Lemma a (n : nat) : nat.
Proof using.
  revert n.
  fix f 1.
  apply f.
Qed.

Lemma b : True.
Proof using i.
  sleep time.
  idtac.
  sleep time.
  (* Here we use "a" *)
  exact I.
Qed.

Lemma work_here : True /\ True.
Proof using i.
(* Jump directly here, Coq reacts immediately *)
split.
  exact b.  (* We can use the lemmas above *)
exact I.
Qed.

End Demo.

From Coq Require Import Program.Tactics.
Obligation Tactic := idtac.
Program Definition foo : nat -> nat * nat :=
  fix f (n : nat) := (0,_).

Next Obligation.
intros f n; apply (f n).
Qed.