1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
Require Import ZArith Lia.
Open Scope Z_scope.
Unset Lia Cache.
Goal forall x y z, 2 <= x ->
3 <= x*y ->
4 <= x*y*z ->
4^10 <= (x^3*y^2*z)^10.
Proof.
intros.
cbn.
Timeout 10 lia. (* runs forever in 8.15, < 1s *)
Qed.
Goal forall x, -3 <= x ->
(-3)^3 <= x^3.
Proof.
intros.
Fail lia.
(* but, interval analysis could conclude because the exponent is odd. *)
(* A proof with an explicit case-split *)
assert (0 <= x \/ x <= 0) by lia.
destruct H0.
lia.
assert ( (-x)^3 <= 3^3).
{ apply Z.pow_le_mono_l. lia. }
lia.
Qed.
|