File: rsyntax.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (66 lines) | stat: -rw-r--r-- 966 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
Require Import ZArith.
Require Import Lra.
Require Import Reals.

Goal (1 / (1 - 1) = 0)%R.
  Fail lra. (* division by zero *)
Abort.

Goal (0 / (1 - 1) = 0)%R.
  lra. (* 0 * x = 0 *)
Qed.

Goal (10 ^ 2 = 100)%R.
  lra. (* pow is reified as a constant *)
Qed.

Goal (2 / (1/2) ^ 2 = 8)%R.
  lra. (* pow is reified as a constant *)
Qed.


Goal ( IZR (Z.sqrt 4) = 2)%R.
Proof.
  Fail lra.
Abort.

Require Import DeclConstant.

#[export] Instance Dsqrt : DeclaredConstant Z.sqrt := {}.

Goal ( IZR (Z.sqrt 4) = 2)%R.
Proof.
  lra.
Qed.

Require Import QArith.
Require Import Qreals.

Goal (Q2R (1 # 2) = 1/2)%R.
Proof.
  lra.
Qed.

Goal ( 1 ^ (2 + 2) = 1)%R.
Proof.
  Fail lra.
Abort.

#[export] Instance Dplus : DeclaredConstant Init.Nat.add := {}.

Goal ( 1 ^ (2 + 2) = 1)%R.
Proof.
  lra.
Qed.

Require Import Lia.

Goal ( 1 ^ (2 + 2) = 1)%Z.
Proof.
  lia. (* exponent is a constant expr *)
Qed.

Goal (1 / IZR (Z.pow_pos 10 25) = 1 / 10 ^ 25)%R.
Proof.
  lra.
Qed.