1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
Require Import Test.base.
Lemma dec_stable `{Decision P} : ¬¬P → P.
Proof. firstorder. Qed.
(** The tactic [destruct_decide] destructs a sumbool [dec]. If one of the
components is double negated, it will try to remove the double negation. *)
Tactic Notation "destruct_decide" constr(dec) "as" ident(H) :=
destruct dec as [H|H];
try match type of H with
| ¬¬_ => apply dec_stable in H
end.
Tactic Notation "destruct_decide" constr(dec) :=
let H := fresh in destruct_decide dec as H.
(** * Monadic operations *)
#[export] Instance option_guard: MGuard option := λ P dec A f,
match dec with left H => f H | _ => None end.
(** * Tactics *)
Tactic Notation "case_option_guard" "as" ident(Hx) :=
match goal with
| H : context C [@mguard option _ ?P ?dec] |- _ =>
change (@mguard option _ P dec) with (λ A (f : P → option A),
match @decide P dec with left H' => f H' | _ => None end) in *;
destruct_decide (@decide P dec) as Hx
| |- context C [@mguard option _ ?P ?dec] =>
change (@mguard option _ P dec) with (λ A (f : P → option A),
match @decide P dec with left H' => f H' | _ => None end) in *;
destruct_decide (@decide P dec) as Hx
end.
Tactic Notation "case_option_guard" :=
let H := fresh in case_option_guard as H.
(* This proof failed depending on the name of the module. *)
Lemma option_guard_True {A} P `{Decision P} (mx : option A) :
P → (guard P; mx) = mx.
Proof. intros. case_option_guard. reflexivity. contradiction. Qed.
|