1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
(* -*- coq-prog-args: ("-async-proofs" "no") -*- *)
Require Import FunctionalExtensionality.
(* Basic example *)
Goal (forall x y z, x+y+z = z+y+x) -> (fun x y z => z+y+x) = (fun x y z => x+y+z).
intro H.
extensionality in H.
symmetry in H.
assumption.
Qed.
(* Test rejection of non-equality *)
Goal forall H:(forall A:Prop, A), H=H -> forall H'':True, H''=H''.
intros H H' H''.
Fail extensionality in H.
clear H'.
Fail extensionality in H.
Fail extensionality in H''.
Abort.
(* Test success on dependent equality *)
Goal forall (p : forall x, S x = x + 1), p = p -> S = fun x => x + 1.
intros p H.
extensionality in p.
assumption.
Qed.
(* Test dependent functional extensionality *)
Goal forall (P:nat->Type) (Q:forall a, P a -> Type) (f g:forall a (b:P a), Q a b),
(forall x y, f x y = g x y) -> f = g.
intros * H.
extensionality in H.
assumption.
Qed.
(* Other tests, courtesy of Jason Gross *)
Goal forall A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c), (forall a b c, f a b c = g a b c) -> f = g.
Proof.
intros A B C D f g H.
extensionality in H.
match type of H with f = g => idtac end.
exact H.
Qed.
Section test_section.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall a b c, f a b c = g a b c).
Goal f = g.
Proof.
extensionality in H.
match type of H with f = g => idtac end.
exact H.
Qed.
End test_section.
Section test2.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall b a c, f a b c = g a b c).
Goal (fun b a c => f a b c) = (fun b a c => g a b c).
Proof.
extensionality in H.
match type of H with (fun b a => f a b) = (fun b' a' => g a' b') => idtac end.
exact H.
Qed.
End test2.
Section test3.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall a c, (fun b => f a b c) = (fun b => g a b c)).
Goal (fun a c b => f a b c) = (fun a c b => g a b c).
Proof.
extensionality in H.
match type of H with (fun a c b => f a b c) = (fun a' c' b' => g a' b' c') => idtac end.
exact H.
Qed.
End test3.
Section test4.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c -> Type)
(H : forall b, (forall a c d, f a b c d) = (forall a c d, g a b c d)).
Goal (fun b => forall a c d, f a b c d) = (fun b => forall a c d, g a b c d).
Proof.
extensionality in H.
exact H.
Qed.
End test4.
Section test5.
Goal nat -> True.
Proof.
intro n.
Fail extensionality in n.
constructor.
Qed.
End test5.
Section test6.
Goal let f := fun A (x : A) => x in let pf := fun A x => @eq_refl _ (f A x) in f = f.
Proof.
intros f pf.
extensionality in pf.
match type of pf with f = f => idtac end.
exact pf.
Qed.
End test6.
Section test7.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall a b c, True -> f a b c = g a b c).
Goal True.
Proof.
extensionality in H.
match type of H with (fun a b c (_ : True) => f a b c) = (fun a' b' c' (_ : True) => g a' b' c') => idtac end.
constructor.
Qed.
End test7.
Section test8.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : True -> forall a b c, f a b c = g a b c).
Goal True.
Proof.
extensionality in H.
match type of H with (fun (_ : True) => f) = (fun (_ : True) => g) => idtac end.
constructor.
Qed.
End test8.
Section test9.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall b a c, f a b c = g a b c).
Goal (fun b a c => f a b c) = (fun b a c => g a b c).
Proof.
pose H as H'.
extensionality in H.
extensionality in H'.
let T := type of H in let T' := type of H' in constr_eq T T'.
match type of H with (fun b a => f a b) = (fun b' a' => g a' b') => idtac end.
exact H'.
Qed.
End test9.
Section test10.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : f = g).
Goal True.
Proof.
Fail extensionality in H.
constructor.
Qed.
End test10.
Section test11.
Context A B C (D : forall a : A, C a -> Type) (f g : forall a : A, B -> forall c : C a, D a c)
(H : forall a b c, f a b c = f a b c).
Goal True.
Proof.
pose H as H'.
pose (eq_refl : H = H') as e.
extensionality in H.
Fail extensionality in H'.
clear e.
extensionality in H'.
let T := type of H in let T' := type of H' in constr_eq T T'.
lazymatch type of H with f = f => idtac end.
constructor.
Qed.
End test11.
|