1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
|
Require Import Coq.ssr.ssreflect.
Axiom R : Type.
Variant extended := EFin of R | EPInf | ENInf.
Definition le_ereal (x1 x2 : extended) :=
match x1, x2 with
| ENInf, EFin r | EFin r, EPInf => true
| EFin r1, EFin r2 => true
| ENInf, _ | _, EPInf => true
| EPInf, _ | _, ENInf => false
end.
Axiom lee_pinfty : forall (x : extended), is_true (le_ereal x (EPInf)).
Definition adde_subdef (x y : extended) :=
match x, y with
| EFin _, EFin _ => x
| ENInf, _ => ENInf
| _ , ENInf => ENInf
| EPInf, _ => EPInf
| _ , EPInf => EPInf
end.
Definition adde := nosimpl adde_subdef.
Goal forall (x : R),
(forall e : R, is_true (le_ereal (EFin x) (adde (EPInf) (EFin e)))) -> True.
Proof.
intros x.
Fail rewrite (lee_pinfty (EFin x)).
constructor.
Qed.
|