1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Axiom daemon : False. Ltac myadmit := case: daemon.
Lemma test x : (x == x) = (x + x.+1 == 2 * x + 1).
case: (X in _ = X) / eqP => _.
match goal with |- (x == x) = true => myadmit end.
match goal with |- (x == x) = false => myadmit end.
Qed.
Lemma test1 x : (x == x) = (x + x.+1 == 2 * x + 1).
elim: (x in RHS).
match goal with |- (x == x) = _ => myadmit end.
match goal with |- forall n, (x == x) = _ -> (x == x) = _ => myadmit end.
Qed.
|