1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp.
Axiom daemon : False. Ltac myadmit := case: daemon.
Axiom P : nat -> Prop.
Lemma clear_test (b1 b2 : bool) : b2 = b2.
Proof.
(* wlog gH : (b3 := b2) / b2 = b3. myadmit. *)
gen have {b1} H, gH : (b3 := b2) (w := erefl 3) / b2 = b3.
myadmit.
Fail exact (H b1).
exact (H b2 (erefl _)).
Qed.
Lemma test1 n (ngt0 : 0 < n) : P n.
gen have lt2le, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0).
match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
Check (lt2le : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
Check (H1 : 0 <= n).
Check (H2 : n != 0).
myadmit.
Qed.
Lemma test2 n (ngt0 : 0 < n) : P n.
gen have _, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0).
match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
lazymatch goal with
| lt2le : forall n : nat, is_true(0 < n) -> is_true((0 <= n) && (n != 0))
|- _ => fail "not cleared"
| _ => idtac end.
Check (H1 : 0 <= n).
Check (H2 : n != 0).
myadmit.
Qed.
Lemma test3 n (ngt0 : 0 < n) : P n.
gen have H : n ngt0 / (0 <= n) && (n != 0).
match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
myadmit.
Qed.
Lemma test4 n (ngt0 : 0 < n) : P n.
gen have : n ngt0 / (0 <= n) && (n != 0).
match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
move=> H.
Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
myadmit.
Qed.
Lemma test4bis n (ngt0 : 0 < n) : P n.
wlog suff : n ngt0 / (0 <= n) && (n != 0); last first.
match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
move=> H.
Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
myadmit.
Qed.
Lemma test5 n (ngt0 : 0 < n) : P n.
Fail gen have : / (0 <= n) && (n != 0).
Abort.
Lemma test6 n (ngt0 : 0 < n) : P n.
gen have : n ngt0 / (0 <= n) && (n != 0) by myadmit.
Abort.
Lemma test7 n (ngt0 : 0 < n) : P n.
Fail gen have : n / (0 <= n) && (n != 0).
Abort.
Lemma test3wlog2 n (ngt0 : 0 < n) : P n.
gen have H : (m := n) ngt0 / (0 <= m) && (m != 0).
match goal with
ngt0 : is_true(0 < m) |- is_true((0 <= m) && (m != 0)) => myadmit end.
Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
myadmit.
Qed.
Lemma test3wlog3 n (ngt0 : 0 < n) : P n.
gen have H : {n} (m := n) (n := 0) ngt0 / (0 <= m) && (m != n).
match goal with
ngt0 : is_true(n < m) |- is_true((0 <= m) && (m != n)) => myadmit end.
Check (H : forall m n : nat, n < m -> (0 <= m) && (m != n)).
myadmit.
Qed.
Lemma testw1 n (ngt0 : 0 < n) : n <= 0.
wlog H : (z := 0) (m := n) ngt0 / m != 0.
match goal with
|- (forall z m,
is_true(z < m) -> is_true(m != 0) -> is_true(m <= z)) ->
is_true(n <= 0) => myadmit end.
Check(n : nat).
Check(m : nat).
Check(z : nat).
Check(ngt0 : z < m).
Check(H : m != 0).
myadmit.
Qed.
Lemma testw2 n (ngt0 : 0 < n) : n <= 0.
wlog H : (m := n) (z := (X in n <= X)) ngt0 / m != z.
match goal with
|- (forall m z : nat,
is_true(0 < m) -> is_true(m != z) -> is_true(m <= z)) ->
is_true(n <= 0) => idtac end.
Restart.
wlog H : (m := n) (one := (X in X <= _)) ngt0 / m != one.
match goal with
|- (forall m one : nat,
is_true(one <= m) -> is_true(m != one) -> is_true(m <= 0)) ->
is_true(n <= 0) => idtac end.
Restart.
wlog H : {n} (m := n) (z := (X in _ <= X)) ngt0 / m != z.
match goal with
|- (forall m z : nat,
is_true(0 < z) -> is_true(m != z) -> is_true(m <= 0)) ->
is_true(n <= 0) => idtac end.
myadmit.
Fail Check n.
myadmit.
Qed.
Section Test.
Variable x : nat.
Definition addx y := y + x.
Lemma testw3 (m n : nat) (ngt0 : 0 < n) : n <= addx x.
wlog H : (n0 := n) (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y.
myadmit.
myadmit.
Qed.
Definition twox := x + x.
Definition bis := twox.
Lemma testw3x n (ngt0 : 0 < n) : n + x <= twox.
wlog H : (y := x) (@twoy := (X in _ <= X)) / twoy = 2 * y.
match goal with
|- (forall y : nat,
let twoy := y + y in
twoy = 2 * y -> is_true(n + y <= twoy)) ->
is_true(n + x <= twox) => myadmit end.
Restart.
wlog H : (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y.
match goal with
|- (forall y : nat,
let twoy := twox in
twoy = 2 * y -> is_true(n + y <= twoy)) ->
is_true(n + x <= twox) => myadmit end.
myadmit.
Qed.
End Test.
Lemma test_in n k (def_k : k = 0) (ngtk : k < n) : P n.
rewrite -(add0n n) in {def_k k ngtk} (m := k) (def_m := def_k) (ngtm := ngtk).
rewrite def_m add0n in {ngtm} (e := erefl 0 ) (ngt0 := ngtm) => {def_m}.
myadmit.
Qed.
|