1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Notation "( a 'in' c )" := (a + c) (only parsing) : myscope.
Delimit Scope myscope with myscope.
Notation "( a 'in' c )" := (a + c) (only parsing).
Lemma foo x y : x + x.+1 = x.+1 + y.
move: {x} (x.+1) {1}x y (x.+1 in RHS).
match goal with |- forall a b c d, b + a = d + c => idtac end.
Admitted.
Lemma bar x y : x + x.+1 = x.+1 + y.
move E: ((x.+1 in y)) => w.
match goal with |- x + x.+1 = w => rewrite -{w}E end.
move E: (x.+1 in y)%myscope => w.
match goal with |- x + x.+1 = w => rewrite -{w}E end.
move E: ((x + y).+1 as RHS) => w.
match goal with |- x + x.+1 = w => rewrite -{}E -addSn end.
Admitted.
|