1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Axiom daemon : False. Ltac myadmit := case: daemon.
Class foo (T : Type) := { n : nat }.
#[export] Instance five : foo nat := {| n := 5 |}.
Definition bar T {f : foo T} m : Prop :=
@n _ f = m.
Eval compute in (bar nat 7).
Lemma a : True.
set toto := bar _ 8.
have titi : bar _ 5.
reflexivity.
have titi2 : bar _ 5 := .
Fail reflexivity.
by myadmit.
have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
move/totoc: nat => _.
exact I.
Qed.
Set SsrHave NoTCResolution.
Lemma a' : True.
set toto := bar _ 8.
have titi : bar _ 5.
Fail reflexivity.
by myadmit.
have titi2 : bar _ 5 := .
Fail reflexivity.
by myadmit.
have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
move/totoc: nat => _.
exact I.
Qed.
Unset SsrHave NoTCResolution.
#[export] Instance test : foo bool.
Proof.
have : foo nat.
Abort.
|