File: have_transp.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (55 lines) | stat: -rw-r--r-- 1,615 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.                  *)

Require Import ssreflect.
Require Import ssrfun ssrbool TestSuite.ssr_mini_mathcomp.


Lemma test1 n : n >= 0.
Proof.
have [:s1] @h m : 'I_(n+m).+1.
  apply: Sub 0 _.
  abstract: s1 m.
  by auto.
cut (forall m, 0 < (n+m).+1); last assumption.
rewrite [_ 1 _]/= in s1 h *.
by [].
Qed.

Lemma test2 n : n >= 0.
Proof.
have [:s1] @h m : 'I_(n+m).+1 := Sub 0 (s1 m).
  move=> m; reflexivity.
cut (forall m, 0 < (n+m).+1); last assumption.
by [].
Qed.

Lemma test3 n : n >= 0.
Proof.
Fail have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0 (s1 m)); auto.
have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract: s1 m; auto.
cut (forall m, 0 < (n+m).+1); last assumption.
by [].
Qed.

Lemma test4 n : n >= 0.
Proof.
have @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract auto.
by [].
Qed.

Lemma test5 : True.
Proof.
have @t : nat := 3.
have : t = 3 by [].
by [].
Qed.