1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
Require Import ssreflect.
Axiom odd : nat -> Prop.
Lemma simple :
forall x, 3 <= x -> forall y, odd (y+x) -> x = y -> True.
Proof.
move=> >x_ge_3 >xy_odd.
lazymatch goal with
| |- ?x = ?y -> True => done
end.
Qed.
Lemma simple2 :
forall x, 3 <= x -> forall y, odd (y+x) -> x = y -> True.
Proof.
move=> >; move=>x_ge_3; move=> >; move=>xy_odd.
lazymatch goal with
| |- ?x = ?y -> True => done
end.
Qed.
Definition stuff x := 3 <= x -> forall y, odd (y+x) -> x = y -> True.
Lemma harder : forall x, stuff x.
Proof.
move=> >x_ge_3 >xy_odd.
lazymatch goal with
| |- ?x = ?y -> True => done
end.
Qed.
Lemma harder2 : forall x, stuff x.
Proof.
move=> >; move=>x_ge_3;move=> >; move=>xy_odd.
lazymatch goal with
| |- ?x = ?y -> True => done
end.
Qed.
Lemma homotop : forall x : nat, forall e : x = x, e = e -> True.
Proof.
move=> >eq_ee.
lazymatch goal with
| |- True => done
end.
Qed.
|