File: ipat_swap.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (25 lines) | stat: -rw-r--r-- 613 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Require Import ssreflect.

Section Swap.

Definition P n := match n with 1 => true | _ => false end.

Lemma test_swap1 : forall (n : nat) (b : bool), P n = b.
Proof. move=> /[swap] b n; suff: P n = b by []. Abort.

Lemma test_swap2 : let n := 1 in let b := true in False.
Proof. move=> /[swap] b n; have : P n = b := eq_refl. Abort.

Lemma test_swap_plus P Q R : P -> Q -> R -> False.
Proof.
move=> + /[swap].
suff: P -> R -> Q -> False by [].
Abort.

Lemma test_swap_plus2 P : P -> let x := 0 in let y := 1 in False.
Proof.
move=> + /[swap].
suff: P -> let y := 1 in let x := 0 in False by [].
Abort.

End Swap.