1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Ltac SUFF1 h t := suff h x (p := x < 0) : t.
Ltac SUFF2 h t := suff h x (p := x < 0) : t by apply h.
Ltac HAVE1 h t u := have h x (p := x < 0) : t := u.
Ltac HAVE2 h t := have h x (p := x < 0) : t by [].
Ltac HAVE3 h t := have h x (p := x < 0) : t.
Ltac HAVES h t := have suff h : t.
Ltac SUFFH h t := suff have h : t.
Lemma foo z : z < 0.
SUFF1 h1 (z+1 < 0).
Undo.
SUFF2 h2 (z < 0).
Undo.
HAVE1 h3 (z = z) (refl_equal z).
Undo.
HAVE2 h4 (z = z).
Undo.
HAVE3 h5 (z < 0).
Undo.
HAVES h6 (z < 1).
Undo.
SUFFH h7 (z < 1).
Undo.
Admitted.
|