1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import TestSuite.ssr_mini_mathcomp.
Lemma test1 : forall n m : nat, n = m -> m * m + n * n = n * n + n * n.
move=> n m E; have [{2}-> _] : n * n = m * n /\ True by move: E => {1}<-.
by move: E => {3}->.
Qed.
Lemma test2 : forall n m : nat, True /\ (n = m -> n * n = n * m).
by move=> n m; constructor=> [|{2}->].
Qed.
|