File: over.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (70 lines) | stat: -rw-r--r-- 1,492 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Require Import ssreflect.

Axiom daemon : False. Ltac myadmit := case: daemon.

(** Testing over for the 1-var case *)

Lemma test_over_1_1 : False.
intros.
evar (I : Type); evar (R : Type); evar (x2 : I -> R).
assert (H : forall i : nat, i + 2 * i - i = x2 i).
  intros i.
  unfold x2 in *; clear x2;
  unfold R in *; clear R;
  unfold I in *; clear I.
  apply Under_rel_from_rel.
  Fail done.

  over.
  myadmit.
Qed.

Lemma test_over_1_2 : False.
intros.
evar (I : Type); evar (R : Type); evar (x2 : I -> R).
assert (H : forall i : nat, i + 2 * i - i = x2 i).
  intros i.
  unfold x2 in *; clear x2;
  unfold R in *; clear R;
  unfold I in *; clear I.
  apply Under_rel_from_rel.
  Fail done.

  by rewrite over.
  myadmit.
Qed.

(** Testing over for the 2-var case *)

Lemma test_over_2_1 : False.
intros.
evar (I : Type); evar (J : Type); evar (R : Type); evar (x2 : I -> J -> R).
assert (H : forall i j, i + 2 * j - i = x2 i j).
  intros i j.
  unfold x2 in *; clear x2;
  unfold R in *; clear R;
  unfold J in *; clear J;
  unfold I in *; clear I.
  apply Under_rel_from_rel.
  Fail done.

  over.
  myadmit.
Qed.

Lemma test_over_2_2 : False.
intros.
evar (I : Type); evar (J : Type); evar (R : Type); evar (x2 : I -> J -> R).
assert (H : forall i j : nat, i + 2 * j - i = x2 i j).
  intros i j.
  unfold x2 in *; clear x2;
  unfold R in *; clear R;
  unfold J in *; clear J;
  unfold I in *; clear I.
  apply Under_rel_from_rel.
  Fail done.

  rewrite over.
  done.
  myadmit.
Qed.