1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool ssrfun TestSuite.ssr_mini_mathcomp.
Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
by move=> x y f; rewrite [_.+1](addnC x.+1).
Qed.
Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y).
by move=> x y f; rewrite {2}[in f _]addnC.
Qed.
Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)).
by move=> x y f; rewrite [in f _](addnC y).
Qed.
Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y).
by move=> x y f; rewrite {1 3}[in f _](addnC y).
Qed.
(* patterns catching bound vars not supported *)
Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)).
by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *)
Qed.
Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x).
by move=> x y f; rewrite [in X in (f _ X)](addnC y).
Qed.
Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x =
x + f (x + y) x + f (y + x) x.
by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
Qed.
Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x =
x + f (x + y) x + f (y + y) x.
by move=> x y f E; rewrite {2}[in X in (f X _)]E.
Qed.
Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x =
x + f (fun _ => x + y) x + f (fun _ => y + x) x.
by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
Qed.
Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x =
x + f (fun _ _ _ => x + y) x.
by move=> x y f E; rewrite {2}[in X in (f X _)]E.
Qed.
Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x =
x + f (x + y) x + f (y + x) x.
by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
Qed.
Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (x + y).
by move=> x y f E; rewrite {1}[in X in (f X X)]E.
Qed.
Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (y + y).
by move=> x y f E; rewrite [in X in (f X X)]E.
Qed.
Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (y + y).
by move=> x y f E; rewrite -[X in (f X X)]E.
Qed.
Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x).
by move=> x y f; rewrite [(x + y) in X in (f X)]addnC.
Qed.
Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC.
Qed.
Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0.
Proof.
rewrite [in f _]addSn.
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end.
rewrite -[X in _ = X]addn0.
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end.
rewrite -{2}[in X in _ = X](addn0 0).
match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end.
rewrite [_.+1 in X in f _ X](addnC x.+1).
match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
rewrite [x.+1 + y as X in f X _]addnC.
match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
Admitted.
Goal (exists x : 'I_3, x > 0).
apply: (ex_intro _ (@Ordinal _ 2 _)).
Admitted.
Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0).
move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)).
by apply: leq_trans y_lt2 _.
by move=> y_lt3; apply: leq_trans _ y_gt1.
Qed.
Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True).
move=> x y P E.
have: P x -> P y by suff: x = y by move=> ?; congr (P _).
Admitted.
Goal forall a : bool, a -> true && a || false && a.
by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=.
Qed.
Goal forall a : bool, a -> true && a || false && a.
by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=.
Qed.
Parameter a : bool.
Definition f x := x || a.
Definition g x := f x.
Goal a -> g false.
by move=> Ha; rewrite [g _]/f orbC Ha.
Qed.
Goal a -> g false || g false.
move=> Ha; rewrite {2}[g _]/f orbC Ha.
match goal with |- (is_true (false || true || g false)) => done end.
Qed.
Goal a -> (a && a || true && a) && true.
by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f.
Qed.
Goal a -> (a || a) && true.
by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f.
Qed.
|