File: under.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (383 lines) | stat: -rw-r--r-- 11,744 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Global Unset SsrOldRewriteGoalsOrder.

(* under <names>: {occs}[patt]<lemma>.
   under <names>: {occs}[patt]<lemma> by tac1.
   under <names>: {occs}[patt]<lemma> by [tac1 | ...].
 *)

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Axiom daemon : False. Ltac myadmit := case: daemon.

Module Mocks.

(* Mock bigop.v definitions to test the behavior of under with bigops
   without requiring mathcomp *)

Definition eqfun :=
  fun (A B : Type) (f g : forall _ : B, A) => forall x : B, @eq A (f x) (g x).

Section Defix.
Variables (T : Type) (n : nat) (f : forall _ : T, T) (x : T).
Fixpoint loop (m : nat) : T :=
  match m return T with
  | O => x
  | S i => f (loop i)
  end.
Definition iter := loop n.
End Defix.

Parameter eq_bigl :
  forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
         (r : list I) (P1 P2 : pred I) (F : forall _ : I, R) (_ : @eqfun bool I P1 P2),
    @eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P1 i) (F i)))
        (@bigop R I idx r (fun i : I => @BigBody R I i op (P2 i) (F i))).

Parameter eq_big :
  forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
         (r : list I) (P1 P2 : pred I) (F1 F2 : forall _ : I, R) (_ : @eqfun bool I P1 P2)
         (_ : forall (i : I) (_ : is_true (P1 i)), @eq R (F1 i) (F2 i)),
    @eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P1 i) (F1 i)))
        (@bigop R I idx r (fun i : I => @BigBody R I i op (P2 i) (F2 i))).

Parameter eq_bigr :
  forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
         (r : list I) (P : pred I) (F1 F2 : forall _ : I, R)
         (_ : forall (i : I) (_ : is_true (P i)), @eq R (F1 i) (F2 i)),
    @eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P i) (F1 i)))
        (@bigop R I idx r (fun i : I => @BigBody R I i op (P i) (F2 i))).

Parameter big_const_nat :
  forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (m n : nat) (x : R),
    @eq R (@bigop R nat idx (index_iota m n) (fun i : nat => @BigBody R nat i op true x))
        (@iter R (subn n m) (op x) idx).

Delimit Scope N_scope with num.
Delimit Scope nat_scope with N.

Reserved Notation "\sum_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m  <=  i  <  n  |  P ) '/  '  F ']'").
Reserved Notation "\sum_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \sum_ ( m  <=  i  <  n ) '/  '  F ']'").

Local Notation "+%N" := addn (at level 0, only parsing).

Notation "\sum_ ( m <= i < n | P ) F" :=
  (\big[+%N/0%N]_(m <= i < n | P%B) F%N) : (*nat_scope*) big_scope.
Notation "\sum_ ( m <= i < n ) F" :=
  (\big[+%N/0%N]_(m <= i < n) F%N) : (*nat_scope*) big_scope.

Parameter iter_addn_0 : forall m n : nat, @eq nat (@iter nat n (addn m) O) (muln m n).

End Mocks.

Import Mocks.

(*****************************************************************************)

Lemma test_big_nested_1 (F G : nat -> nat) (m n : nat) :
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
(* in interactive mode *)
under eq_bigr => i Hi.
  under eq_big => [j|j Hj].
  { rewrite muln1. over. }
  { rewrite addnC. over. }
  simpl. (* or: cbv beta. *)
  over.
by [].
Qed.

Lemma test_big_nested_2 (F G : nat -> nat) (m n : nat) :
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
(* in one-liner mode *)
under eq_bigr => i Hi do under eq_big => [j|j Hj] do [rewrite muln1 | rewrite addnC ].
done.
Qed.

Lemma test_big_2cond_0intro (F : nat -> nat) (m : nat) :
  \sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
under eq_big.
{ move=> n; rewrite (addnC n 1); over. }
{ move=> i Hi; rewrite (addnC i 2); over. }
done.
Qed.

Lemma test_big_2cond_1intro (F : nat -> nat) (m : nat) :
  \sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
Fail under eq_big => i.
(* as it amounts to [under eq_big => [i]] *)
Abort.

Lemma test_big_2cond_all (F : nat -> nat) (m : nat) :
  \sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
Fail under eq_big => *.
(* as it amounts to [under eq_big => [*]] *)
Abort.

Lemma test_big_2cond_all_implied (F : nat -> nat) (m : nat) :
  \sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in one-liner mode *)
under eq_big do [rewrite addnC
                |rewrite addnC].
(* amounts to [under eq_big => [*|*] do [...|...]] *)
done.
Qed.

Lemma test_big_patt1 (F G : nat -> nat) (n : nat) :
  \sum_(0 <= i < n) (F i + G i) = \sum_(0 <= i < n) (G i + F i) + 0.
Proof.
under [in RHS]eq_bigr => i Hi.
  by rewrite addnC over.
done.
Qed.

Lemma test_big_patt2 (F G : nat -> nat) (n : nat) :
  \sum_(0 <= i < n) (F i + F i) =
  \sum_(0 <= i < n) 0 + \sum_(0 <= i < n) (F i * 2).
Proof.
under [X in _ = _ + X]eq_bigr => i Hi do rewrite mulnS muln1.
by rewrite big_const_nat iter_addn_0.
Qed.

Lemma test_big_occs (F G : nat -> nat) (n : nat) :
  \sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0).
Proof.
under {2}[in RHS]eq_bigr => i Hi do rewrite muln0.
by rewrite big_const_nat iter_addn_0 mul0n addn0.
Qed.

Lemma test_big_occs_inH (F G : nat -> nat) (n : nat) :
  \sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0) -> True.
Proof.
move=> H.
do [under {2}[in RHS]eq_bigr => i Hi do rewrite muln0] in H.
by rewrite big_const_nat iter_addn_0 mul0n addn0 in H.
Qed.

(* Solely used, one such renaming is useless in practice, but it works anyway *)
Lemma test_big_cosmetic (F G : nat -> nat) (m n : nat) :
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
  \sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
under [RHS]eq_bigr => a A do under eq_bigr => b B do []. (* renaming bound vars *)
myadmit.
Qed.

Lemma test_big_andb (F : nat -> nat) (m n : nat) :
  \sum_(0 <= i < 5 | odd i && (i == 1)) i = 1.
Proof.
under eq_bigl => i do [rewrite andb_idl; first by move/eqP->].
under eq_bigr => i do move/eqP=>{1}->. (* the 2nd occ should not be touched *)
myadmit.
Qed.

Lemma test_foo (f1 f2 : nat -> nat) (f_eq : forall n, f1 n = f2 n)
      (G : (nat -> nat) -> nat)
      (Lem : forall f1 f2 : nat -> nat,
          True ->
          (forall n, f1 n = f2 n) ->
          False = False ->
          G f1 = G f2) :
  G f1 = G f2.
Proof.
(*
under x: Lem.
- done.
- rewrite f_eq; over.
- done.
 *)
under Lem => [|x|] do [done|rewrite f_eq|done].
done.
Qed.


(* Inspired From Coquelicot.Lub. *)
(* http://coquelicot.saclay.inria.fr/html/Coquelicot.Lub.html#Lub_Rbar_eqset *)

Parameters (R Rbar : Set) (R0 : R) (Rbar0 : Rbar).
Parameter Rbar_le : Rbar -> Rbar -> Prop.
Parameter Lub_Rbar : (R -> Prop) -> Rbar.
Parameter Lub_Rbar_eqset :
  forall E1 E2 : R -> Prop,
    (forall x : R, E1 x <-> E2 x) ->
    Lub_Rbar E1 = Lub_Rbar E2.

Lemma test_Lub_Rbar (E : R -> Prop)  :
  Rbar_le Rbar0 (Lub_Rbar (fun x => x = R0 \/ E x)).
Proof.
under Lub_Rbar_eqset => r.
by rewrite over.
Abort.

Lemma ex_iff R (P1 P2 : R -> Prop) :
  (forall x : R, P1 x <-> P2 x) -> ((exists x, P1 x) <-> (exists x, P2 x)).
Proof.
by move=> H; split; move=> [x Hx]; exists x; apply H.
Qed.

Arguments ex_iff [R P1] P2 iffP12.

(** Load the [setoid_rewrite] machinery *)
Require Setoid.

(** Replay the tactics from [test_Lub_Rbar] in this new environment *)
Lemma test_Lub_Rbar_again (E : R -> Prop)  :
  Rbar_le Rbar0 (Lub_Rbar (fun x => x = R0 \/ E x)).
Proof.
under Lub_Rbar_eqset => r.
by rewrite over.
Abort.

Lemma test_ex_iff (P : nat -> Prop) : (exists x, P x) -> True.
under ex_iff => n. (* this requires [Setoid] *)
by rewrite over.
by move=> _.
Qed.

Section TestGeneric.
Context {A B : Type} {R : nat -> B -> B -> Prop}
        `{!forall n : nat, RelationClasses.Equivalence (R n)}.
Variables (F : (A -> A -> B) -> B).
Hypothesis ex_gen : forall (n : nat) (P1 P2 : A -> A -> B),
  (forall x y : A, R n (P1 x y) (P2 x y)) -> (R n (F P1) (F P2)).
Arguments ex_gen [n P1] P2 _.
Lemma test_ex_gen (P1 P2 : A -> A -> B) (n : nat) :
  (forall x y : A, P2 x y = P2 y x) ->
  R n (F P1) (F P2) /\ True -> True.
Proof.
move=> P2C.
under [X in R _ _ X]ex_gen => a b.
  by rewrite P2C over.
by move => _.
Qed.
End TestGeneric.

Import Setoid.
(* to expose [Coq.Relations.Relation_Definitions.reflexive],
   [Coq.Classes.RelationClasses.RewriteRelation], and so on. *)

Section TestGeneric2.
(* Some toy abstract example with a parameterized setoid type *)
Record Setoid (m n : nat) : Type :=
  { car : Type
  ; Rel : car -> car -> Prop
  ; refl : reflexive _ Rel
  ; sym : symmetric _ Rel
  ; trans : transitive _ Rel
  }.

Context {m n : nat}.
Add Parametric Relation (s : Setoid m n) : (car s) (@Rel _ _ s)
  reflexivity proved by (@refl _ _ s)
  symmetry proved by (@sym _ _ s)
  transitivity proved by (@trans _ _ s)
  as eq_rel.

Context {A : Type} {s1 s2 : Setoid m n}.

Let B := @car m n s1.
Let C := @car m n s2.
Variable (F : C -> (A -> A -> B) -> C).
Hypothesis rel2_gen :
  forall (c1 c2 : C) (P1 P2 : A -> A -> B),
    Rel c1 c2 ->
    (forall a b : A, Rel (P1 a b) (P2 a b)) ->
    Rel (F c1 P1) (F c2 P2).
Arguments rel2_gen [c1] c2 [P1] P2 _ _.
Lemma test_rel2_gen (c : C) (P : A -> A -> B)
  (toy_hyp : forall a b, P a b = P b a) :
  Rel (F c P) (F c (fun a b => P b a)).
Proof.
under [here in Rel _ here]rel2_gen.
- over.
- by move=> a b; rewrite toy_hyp over.
- reflexivity.
Qed.
End TestGeneric2.

Section TestPreOrder.
(* inspired by https://github.com/coq/coq/pull/10022#issuecomment-530101950 *)

Require Import Morphisms.

(** Tip to tell rewrite that the LHS of [leq' x y (:= leq x y = true)]
    is x, not [leq x y] *)
Definition rel_true {T} (R : rel T) x y := is_true (R x y).
Definition leq' : nat -> nat -> Prop := rel_true leq.

Parameter leq_add :
  forall m1 m2 n1 n2 : nat, m1 <= n1 -> m2 <= n2 -> m1 + m2 <= n1 + n2.
Parameter leq_mul :
 forall m1 m2 n1 n2 : nat, m1 <= n1 -> m2 <= n2 -> m1 * m2 <= n1 * n2.

Local Notation "+%N" := addn (at level 0, only parsing).

(** Context lemma *)
Lemma leq'_big : forall I (F G : I -> nat) (r : seq I),
    (forall i : I, leq' (F i) (G i)) ->
    (leq' (\big[+%N/0%N]_(i <- r) F i) (\big[+%N/0%N]_(i <- r) G i)).
Proof.
red=> F G m n HFG.
apply: (big_ind2 leq _ _ (P := xpredT) (op1 := addn) (op2 := addn)) =>//.
move=> *; exact: leq_add.
move=> *; exact: HFG.
Qed.

(** Instances for [setoid_rewrite] *)
Instance leq'_rr : RewriteRelation leq' := {}.

Instance leq'_proper_addn : Proper (leq' ==> leq' ==> leq') addn.
Proof. move=> a1 b1 le1 a2 b2 le2; exact/leq_add. Qed.

Instance leq'_proper_muln : Proper (leq' ==> leq' ==> leq') muln.
Proof. move=> a1 b1 le1 a2 b2 le2; exact/leq_mul. Qed.


Instance leq'_preorder : PreOrder leq'.
(** encompasses [Reflexive] *)
Proof. rewrite /leq' /rel_true; split =>// ??? A B; exact: leq_trans A B. Qed.

Instance leq'_reflexive : Reflexive leq'.
Proof. by rewrite /leq' /rel_true. Qed.

Parameter leq_add2l :
  forall p m n : nat, (p + m <= p + n) = (m <= n).

Lemma test : forall n : nat,
  (1 + 2 * (\big[+%N/0]_(i < n) (3 + i)) * 4 + 5 <= 6 + 24 * n + 8 * n * n)%N.
Proof.
move=> n; rewrite -[is_true _]/(rel_true _ _ _) -/leq'.
have lem : forall (i : nat), i < n -> leq' (3 + i) (3 + n).
{ by move=> i Hi; rewrite /leq' /rel_true leq_add2l; apply/ltnW. }

under leq'_big => i.
{
  rewrite UnderE.

  (* instantiate the evar with the bound "3 + n" *)
  apply: lem; exact: ltn_ord.
}
cbv beta.

now_show (leq' (1 + 2 * \big[+%N/0]_(i < n) (3 + n) * 4 + 5) (6 + 24 * n + 8 * n * n)).
(* uninteresting end of proof, omitted *)
Abort.

End TestPreOrder.