1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Global Unset SsrOldRewriteGoalsOrder.
(* under <names>: {occs}[patt]<lemma>.
under <names>: {occs}[patt]<lemma> by tac1.
under <names>: {occs}[patt]<lemma> by [tac1 | ...].
*)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Axiom daemon : False. Ltac myadmit := case: daemon.
Module Mocks.
(* Mock bigop.v definitions to test the behavior of under with bigops
without requiring mathcomp *)
Definition eqfun :=
fun (A B : Type) (f g : forall _ : B, A) => forall x : B, @eq A (f x) (g x).
Section Defix.
Variables (T : Type) (n : nat) (f : forall _ : T, T) (x : T).
Fixpoint loop (m : nat) : T :=
match m return T with
| O => x
| S i => f (loop i)
end.
Definition iter := loop n.
End Defix.
Parameter eq_bigl :
forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
(r : list I) (P1 P2 : pred I) (F : forall _ : I, R) (_ : @eqfun bool I P1 P2),
@eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P1 i) (F i)))
(@bigop R I idx r (fun i : I => @BigBody R I i op (P2 i) (F i))).
Parameter eq_big :
forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
(r : list I) (P1 P2 : pred I) (F1 F2 : forall _ : I, R) (_ : @eqfun bool I P1 P2)
(_ : forall (i : I) (_ : is_true (P1 i)), @eq R (F1 i) (F2 i)),
@eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P1 i) (F1 i)))
(@bigop R I idx r (fun i : I => @BigBody R I i op (P2 i) (F2 i))).
Parameter eq_bigr :
forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (I : Type)
(r : list I) (P : pred I) (F1 F2 : forall _ : I, R)
(_ : forall (i : I) (_ : is_true (P i)), @eq R (F1 i) (F2 i)),
@eq R (@bigop R I idx r (fun i : I => @BigBody R I i op (P i) (F1 i)))
(@bigop R I idx r (fun i : I => @BigBody R I i op (P i) (F2 i))).
Parameter big_const_nat :
forall (R : Type) (idx : R) (op : forall (_ : R) (_ : R), R) (m n : nat) (x : R),
@eq R (@bigop R nat idx (index_iota m n) (fun i : nat => @BigBody R nat i op true x))
(@iter R (subn n m) (op x) idx).
Delimit Scope N_scope with num.
Delimit Scope nat_scope with N.
Reserved Notation "\sum_ ( m <= i < n | P ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \sum_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( m <= i < n ) F"
(at level 41, F at level 41, i, m, n at level 50,
format "'[' \sum_ ( m <= i < n ) '/ ' F ']'").
Local Notation "+%N" := addn (at level 0, only parsing).
Notation "\sum_ ( m <= i < n | P ) F" :=
(\big[+%N/0%N]_(m <= i < n | P%B) F%N) : (*nat_scope*) big_scope.
Notation "\sum_ ( m <= i < n ) F" :=
(\big[+%N/0%N]_(m <= i < n) F%N) : (*nat_scope*) big_scope.
Parameter iter_addn_0 : forall m n : nat, @eq nat (@iter nat n (addn m) O) (muln m n).
End Mocks.
Import Mocks.
(*****************************************************************************)
Lemma test_big_nested_1 (F G : nat -> nat) (m n : nat) :
\sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
\sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
(* in interactive mode *)
under eq_bigr => i Hi.
under eq_big => [j|j Hj].
{ rewrite muln1. over. }
{ rewrite addnC. over. }
simpl. (* or: cbv beta. *)
over.
by [].
Qed.
Lemma test_big_nested_2 (F G : nat -> nat) (m n : nat) :
\sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
\sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
(* in one-liner mode *)
under eq_bigr => i Hi do under eq_big => [j|j Hj] do [rewrite muln1 | rewrite addnC ].
done.
Qed.
Lemma test_big_2cond_0intro (F : nat -> nat) (m : nat) :
\sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
under eq_big.
{ move=> n; rewrite (addnC n 1); over. }
{ move=> i Hi; rewrite (addnC i 2); over. }
done.
Qed.
Lemma test_big_2cond_1intro (F : nat -> nat) (m : nat) :
\sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
Fail under eq_big => i.
(* as it amounts to [under eq_big => [i]] *)
Abort.
Lemma test_big_2cond_all (F : nat -> nat) (m : nat) :
\sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in interactive mode *)
Fail under eq_big => *.
(* as it amounts to [under eq_big => [*]] *)
Abort.
Lemma test_big_2cond_all_implied (F : nat -> nat) (m : nat) :
\sum_(0 <= i < m | odd (i + 1)) (i + 2) >= 0.
Proof.
(* in one-liner mode *)
under eq_big do [rewrite addnC
|rewrite addnC].
(* amounts to [under eq_big => [*|*] do [...|...]] *)
done.
Qed.
Lemma test_big_patt1 (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (F i + G i) = \sum_(0 <= i < n) (G i + F i) + 0.
Proof.
under [in RHS]eq_bigr => i Hi.
by rewrite addnC over.
done.
Qed.
Lemma test_big_patt2 (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (F i + F i) =
\sum_(0 <= i < n) 0 + \sum_(0 <= i < n) (F i * 2).
Proof.
under [X in _ = _ + X]eq_bigr => i Hi do rewrite mulnS muln1.
by rewrite big_const_nat iter_addn_0.
Qed.
Lemma test_big_occs (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0).
Proof.
under {2}[in RHS]eq_bigr => i Hi do rewrite muln0.
by rewrite big_const_nat iter_addn_0 mul0n addn0.
Qed.
Lemma test_big_occs_inH (F G : nat -> nat) (n : nat) :
\sum_(0 <= i < n) (i * 0) = \sum_(0 <= i < n) (i * 0) + \sum_(0 <= i < n) (i * 0) -> True.
Proof.
move=> H.
do [under {2}[in RHS]eq_bigr => i Hi do rewrite muln0] in H.
by rewrite big_const_nat iter_addn_0 mul0n addn0 in H.
Qed.
(* Solely used, one such renaming is useless in practice, but it works anyway *)
Lemma test_big_cosmetic (F G : nat -> nat) (m n : nat) :
\sum_(0 <= i < m) \sum_(0 <= j < n | odd (j * 1)) (i + j) =
\sum_(0 <= i < m) \sum_(0 <= j < n | odd j) (j + i).
Proof.
under [RHS]eq_bigr => a A do under eq_bigr => b B do []. (* renaming bound vars *)
myadmit.
Qed.
Lemma test_big_andb (F : nat -> nat) (m n : nat) :
\sum_(0 <= i < 5 | odd i && (i == 1)) i = 1.
Proof.
under eq_bigl => i do [rewrite andb_idl; first by move/eqP->].
under eq_bigr => i do move/eqP=>{1}->. (* the 2nd occ should not be touched *)
myadmit.
Qed.
Lemma test_foo (f1 f2 : nat -> nat) (f_eq : forall n, f1 n = f2 n)
(G : (nat -> nat) -> nat)
(Lem : forall f1 f2 : nat -> nat,
True ->
(forall n, f1 n = f2 n) ->
False = False ->
G f1 = G f2) :
G f1 = G f2.
Proof.
(*
under x: Lem.
- done.
- rewrite f_eq; over.
- done.
*)
under Lem => [|x|] do [done|rewrite f_eq|done].
done.
Qed.
(* Inspired From Coquelicot.Lub. *)
(* http://coquelicot.saclay.inria.fr/html/Coquelicot.Lub.html#Lub_Rbar_eqset *)
Parameters (R Rbar : Set) (R0 : R) (Rbar0 : Rbar).
Parameter Rbar_le : Rbar -> Rbar -> Prop.
Parameter Lub_Rbar : (R -> Prop) -> Rbar.
Parameter Lub_Rbar_eqset :
forall E1 E2 : R -> Prop,
(forall x : R, E1 x <-> E2 x) ->
Lub_Rbar E1 = Lub_Rbar E2.
Lemma test_Lub_Rbar (E : R -> Prop) :
Rbar_le Rbar0 (Lub_Rbar (fun x => x = R0 \/ E x)).
Proof.
under Lub_Rbar_eqset => r.
by rewrite over.
Abort.
Lemma ex_iff R (P1 P2 : R -> Prop) :
(forall x : R, P1 x <-> P2 x) -> ((exists x, P1 x) <-> (exists x, P2 x)).
Proof.
by move=> H; split; move=> [x Hx]; exists x; apply H.
Qed.
Arguments ex_iff [R P1] P2 iffP12.
(** Load the [setoid_rewrite] machinery *)
Require Setoid.
(** Replay the tactics from [test_Lub_Rbar] in this new environment *)
Lemma test_Lub_Rbar_again (E : R -> Prop) :
Rbar_le Rbar0 (Lub_Rbar (fun x => x = R0 \/ E x)).
Proof.
under Lub_Rbar_eqset => r.
by rewrite over.
Abort.
Lemma test_ex_iff (P : nat -> Prop) : (exists x, P x) -> True.
under ex_iff => n. (* this requires [Setoid] *)
by rewrite over.
by move=> _.
Qed.
Section TestGeneric.
Context {A B : Type} {R : nat -> B -> B -> Prop}
`{!forall n : nat, RelationClasses.Equivalence (R n)}.
Variables (F : (A -> A -> B) -> B).
Hypothesis ex_gen : forall (n : nat) (P1 P2 : A -> A -> B),
(forall x y : A, R n (P1 x y) (P2 x y)) -> (R n (F P1) (F P2)).
Arguments ex_gen [n P1] P2 _.
Lemma test_ex_gen (P1 P2 : A -> A -> B) (n : nat) :
(forall x y : A, P2 x y = P2 y x) ->
R n (F P1) (F P2) /\ True -> True.
Proof.
move=> P2C.
under [X in R _ _ X]ex_gen => a b.
by rewrite P2C over.
by move => _.
Qed.
End TestGeneric.
Import Setoid.
(* to expose [Coq.Relations.Relation_Definitions.reflexive],
[Coq.Classes.RelationClasses.RewriteRelation], and so on. *)
Section TestGeneric2.
(* Some toy abstract example with a parameterized setoid type *)
Record Setoid (m n : nat) : Type :=
{ car : Type
; Rel : car -> car -> Prop
; refl : reflexive _ Rel
; sym : symmetric _ Rel
; trans : transitive _ Rel
}.
Context {m n : nat}.
Add Parametric Relation (s : Setoid m n) : (car s) (@Rel _ _ s)
reflexivity proved by (@refl _ _ s)
symmetry proved by (@sym _ _ s)
transitivity proved by (@trans _ _ s)
as eq_rel.
Context {A : Type} {s1 s2 : Setoid m n}.
Let B := @car m n s1.
Let C := @car m n s2.
Variable (F : C -> (A -> A -> B) -> C).
Hypothesis rel2_gen :
forall (c1 c2 : C) (P1 P2 : A -> A -> B),
Rel c1 c2 ->
(forall a b : A, Rel (P1 a b) (P2 a b)) ->
Rel (F c1 P1) (F c2 P2).
Arguments rel2_gen [c1] c2 [P1] P2 _ _.
Lemma test_rel2_gen (c : C) (P : A -> A -> B)
(toy_hyp : forall a b, P a b = P b a) :
Rel (F c P) (F c (fun a b => P b a)).
Proof.
under [here in Rel _ here]rel2_gen.
- over.
- by move=> a b; rewrite toy_hyp over.
- reflexivity.
Qed.
End TestGeneric2.
Section TestPreOrder.
(* inspired by https://github.com/coq/coq/pull/10022#issuecomment-530101950 *)
Require Import Morphisms.
(** Tip to tell rewrite that the LHS of [leq' x y (:= leq x y = true)]
is x, not [leq x y] *)
Definition rel_true {T} (R : rel T) x y := is_true (R x y).
Definition leq' : nat -> nat -> Prop := rel_true leq.
Parameter leq_add :
forall m1 m2 n1 n2 : nat, m1 <= n1 -> m2 <= n2 -> m1 + m2 <= n1 + n2.
Parameter leq_mul :
forall m1 m2 n1 n2 : nat, m1 <= n1 -> m2 <= n2 -> m1 * m2 <= n1 * n2.
Local Notation "+%N" := addn (at level 0, only parsing).
(** Context lemma *)
Lemma leq'_big : forall I (F G : I -> nat) (r : seq I),
(forall i : I, leq' (F i) (G i)) ->
(leq' (\big[+%N/0%N]_(i <- r) F i) (\big[+%N/0%N]_(i <- r) G i)).
Proof.
red=> F G m n HFG.
apply: (big_ind2 leq _ _ (P := xpredT) (op1 := addn) (op2 := addn)) =>//.
move=> *; exact: leq_add.
move=> *; exact: HFG.
Qed.
(** Instances for [setoid_rewrite] *)
Instance leq'_rr : RewriteRelation leq' := {}.
Instance leq'_proper_addn : Proper (leq' ==> leq' ==> leq') addn.
Proof. move=> a1 b1 le1 a2 b2 le2; exact/leq_add. Qed.
Instance leq'_proper_muln : Proper (leq' ==> leq' ==> leq') muln.
Proof. move=> a1 b1 le1 a2 b2 le2; exact/leq_mul. Qed.
Instance leq'_preorder : PreOrder leq'.
(** encompasses [Reflexive] *)
Proof. rewrite /leq' /rel_true; split =>// ??? A B; exact: leq_trans A B. Qed.
Instance leq'_reflexive : Reflexive leq'.
Proof. by rewrite /leq' /rel_true. Qed.
Parameter leq_add2l :
forall p m n : nat, (p + m <= p + n) = (m <= n).
Lemma test : forall n : nat,
(1 + 2 * (\big[+%N/0]_(i < n) (3 + i)) * 4 + 5 <= 6 + 24 * n + 8 * n * n)%N.
Proof.
move=> n; rewrite -[is_true _]/(rel_true _ _ _) -/leq'.
have lem : forall (i : nat), i < n -> leq' (3 + i) (3 + n).
{ by move=> i Hi; rewrite /leq' /rel_true leq_add2l; apply/ltnW. }
under leq'_big => i.
{
rewrite UnderE.
(* instantiate the evar with the bound "3 + n" *)
apply: lem; exact: ltn_ord.
}
cbv beta.
now_show (leq' (1 + 2 * \big[+%N/0]_(i < n) (3 + n) * 4 + 5) (6 + 24 * n + 8 * n * n)).
(* uninteresting end of proof, omitted *)
Abort.
End TestPreOrder.
|