1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
(* in clause pattern *)
Require Vector.
Check (fun n (x: Vector.t True (S n)) =>
match x in Vector.t _ (S m) return True with
|Vector.cons _ h _ _ => h
end).
(* Notation *)
Import Vector.VectorNotations.
Notation "A \dots n" := (Vector.t A n) (at level 200).
Check (fun m (x: Vector.t nat m) =>
match x in _ \dots k return Vector.t nat (S k) with
| Vector.nil _ => 0 :: []
| Vector.cons _ h _ t => h :: h :: t
end).
(* N should be a variable and not the inductiveRef *)
Require Import NArith.
Theorem foo : forall (n m : nat) (pf : n = m),
match pf in _ = N with
| eq_refl => unit
end.
Abort.
(* Check redundant clause is removed *)
Inductive I : nat * nat -> Type := C : I (0,0).
Check fun x : I (1,1) => match x in I (y,z) return y = z with C => eq_refl end.
(* An example of non-local inference of the type of an impossible case *)
Check (fun y n (x:Vector.t nat (S n)) => match x with a::_ => a | _ => y end) 2.
|