File: CaseInClause.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (30 lines) | stat: -rw-r--r-- 991 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
(* in clause pattern *)
Require Vector.
Check (fun n (x: Vector.t True (S n)) =>
  match x in Vector.t _ (S m) return True with
    |Vector.cons _ h _ _ => h
  end).

(* Notation *)
Import Vector.VectorNotations.
Notation "A \dots n" := (Vector.t A n) (at level 200).
Check (fun m (x: Vector.t nat m) =>
  match x in _ \dots k return Vector.t nat (S k) with
    | Vector.nil _ => 0 :: []
    | Vector.cons _ h _ t => h :: h :: t
  end).

(* N should be a variable and not the inductiveRef *)
Require Import NArith.
Theorem foo : forall (n m : nat) (pf : n = m),
                match pf in _ = N with 
                  | eq_refl => unit
                end.
Abort.

(* Check redundant clause is removed *)
Inductive I : nat * nat -> Type := C : I (0,0).
Check fun x : I (1,1) => match x in I (y,z) return y = z with C => eq_refl end.

(* An example of non-local inference of the type of an impossible case *)
Check (fun y n (x:Vector.t nat (S n)) => match x with a::_ => a | _ => y end) 2.