1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
Require Import Coq.funind.FunInd.
Definition iszero (n : nat) : bool :=
match n with
| O => true
| _ => false
end.
Functional Scheme iszero_ind := Induction for iszero Sort Prop.
Lemma toto : forall n : nat, n = 0 -> iszero n = true.
intros x eg.
functional induction iszero x; simpl.
trivial.
inversion eg.
Qed.
Function ftest (n m : nat) : nat :=
match n with
| O => match m with
| O => 0
| _ => 1
end
| S p => 0
end.
(* MS: FIXME: apparently can't define R_ftest_complete. Rest of the file goes through. *)
Lemma test1 : forall n m : nat, ftest n m <= 2.
intros n m.
functional induction ftest n m; auto.
Qed.
Lemma test2 : forall m n, ~ 2 = ftest n m.
Proof.
intros n m;intro H.
functional inversion H ftest.
Qed.
Lemma test3 : forall n m, ftest n m = 0 -> (n = 0 /\ m = 0) \/ n <> 0.
Proof.
functional inversion 1 ftest;auto.
Qed.
Require Import Arith.
Lemma test11 : forall m : nat, ftest 0 m <= 2.
intros m.
functional induction ftest 0 m.
auto.
auto.
auto with *.
Qed.
Function lamfix (m n : nat) {struct n } : nat :=
match n with
| O => m
| S p => lamfix m p
end.
(* Parameter v1 v2 : nat. *)
Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1.
intros v1 v2.
functional induction lamfix v1 v2.
trivial.
assumption.
Defined.
(* polymorphic function *)
Require Import List.
Functional Scheme app_ind := Induction for app Sort Prop.
Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'.
intros A l l'.
functional induction app l l'; intuition.
rewrite <- H0; trivial.
Qed.
Require Export Arith.
Function trivfun (n : nat) : nat :=
match n with
| O => 0
| S m => trivfun m
end.
(* essaie de parametre variables non locaux:*)
Parameter varessai : nat.
Lemma first_try : trivfun varessai = 0.
functional induction trivfun varessai.
trivial.
assumption.
Defined.
Functional Scheme triv_ind := Induction for trivfun Sort Prop.
Lemma bisrepetita : forall n' : nat, trivfun n' = 0.
intros n'.
functional induction trivfun n'.
trivial.
assumption.
Qed.
Function iseven (n : nat) : bool :=
match n with
| O => true
| S (S m) => iseven m
| _ => false
end.
Function funex (n : nat) : nat :=
match iseven n with
| true => n
| false => match n with
| O => 0
| S r => funex r
end
end.
Function nat_equal_bool (n m : nat) {struct n} : bool :=
match n with
| O => match m with
| O => true
| _ => false
end
| S p => match m with
| O => false
| S q => nat_equal_bool p q
end
end.
Require Import Nat.
Functional Scheme div2_ind := Induction for Nat.div2 Sort Prop.
Lemma div2_inf : forall n : nat, Nat.div2 n <= n.
intros n.
functional induction Nat.div2 n.
auto.
auto.
apply le_S.
apply le_n_S.
exact IHn0.
Qed.
(* reuse this lemma as a scheme:*)
Function nested_lam (n : nat) : nat -> nat :=
match n with
| O => fun m : nat => 0
| S n' => fun m : nat => m + nested_lam n' m
end.
Lemma nest : forall n m : nat, nested_lam n m = n * m.
intros n m.
functional induction nested_lam n m; simpl;auto.
Qed.
Function essai (x : nat) (p : nat * nat) {struct x} : nat :=
let (n, m) := (p: nat*nat) in
match n with
| O => 0
| S q => match x with
| O => 1
| S r => S (essai r (q, m))
end
end.
Lemma essai_essai :
forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p.
intros x p.
functional induction essai x p; intros.
inversion H.
auto with arith.
auto with arith.
Qed.
Function plus_x_not_five'' (n m : nat) {struct n} : nat :=
let x := nat_equal_bool m 5 in
let y := 0 in
match n with
| O => y
| S q =>
let recapp := plus_x_not_five'' q m in
match x with
| true => S recapp
| false => S recapp
end
end.
Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x.
intros a b.
functional induction plus_x_not_five'' a b; intros hyp; simpl; auto.
Qed.
Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true.
intros n m.
functional induction nat_equal_bool n m; simpl; intros hyp; auto.
rewrite <- hyp in y; simpl in y;tauto.
inversion hyp.
Qed.
Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m.
intros n m.
functional induction nat_equal_bool n m; simpl; intros eg; auto.
inversion eg.
inversion eg.
Qed.
Inductive istrue : bool -> Prop :=
istrue0 : istrue true.
Functional Scheme add_ind := Induction for add Sort Prop.
Lemma inf_x_plusxy' : forall x y : nat, x <= x + y.
intros n m.
functional induction add n m; intros.
auto with arith.
auto with arith.
Qed.
Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0.
intros n.
unfold plus.
functional induction plus n 0; intros.
auto with arith.
apply le_n_S.
assumption.
Qed.
Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x.
intros n.
functional induction plus 0 n; intros; auto with arith.
Qed.
Function mod2 (n : nat) : nat :=
match n with
| O => 0
| S (S m) => S (mod2 m)
| _ => 0
end.
Lemma princ_mod2 : forall n : nat, mod2 n <= n.
intros n.
functional induction mod2 n; simpl; auto with arith.
Qed.
Function isfour (n : nat) : bool :=
match n with
| S (S (S (S O))) => true
| _ => false
end.
Function isononeorfour (n : nat) : bool :=
match n with
| S O => true
| S (S (S (S O))) => true
| _ => false
end.
Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n).
intros n.
functional induction isononeorfour n; intros istr; simpl;
inversion istr.
apply istrue0.
destruct n. inversion istr.
destruct n. tauto.
destruct n. inversion istr.
destruct n. inversion istr.
destruct n. tauto.
simpl in *. inversion H0.
Qed.
Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n).
intros n.
functional induction isononeorfour n; intros m istr; inversion istr.
apply istrue0.
rewrite H in y; simpl in y;tauto.
Qed.
Function ftest4 (n m : nat) : nat :=
match n with
| O => match m with
| O => 0
| S q => 1
end
| S p => match m with
| O => 0
| S r => 1
end
end.
Lemma test4 : forall n m : nat, ftest n m <= 2.
intros n m.
functional induction ftest n m; auto with arith.
Qed.
Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2.
intros n m.
assert ({n0 | n0 = S n}).
exists (S n);reflexivity.
destruct H as [n0 H1].
rewrite <- H1;revert H1.
functional induction ftest4 n0 m.
inversion 1.
inversion 1.
auto with arith.
auto with arith.
Qed.
Function ftest44 (x : nat * nat) (n m : nat) : nat :=
let (p, q) := (x: nat*nat) in
match n with
| O => match m with
| O => 0
| S q => 1
end
| S p => match m with
| O => 0
| S r => 1
end
end.
Lemma test44 :
forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2.
intros pq n m o r s.
functional induction ftest44 pq n (S m).
auto with arith.
auto with arith.
auto with arith.
auto with arith.
Qed.
Function ftest2 (n m : nat) {struct n} : nat :=
match n with
| O => match m with
| O => 0
| S q => 0
end
| S p => ftest2 p m
end.
Lemma test2' : forall n m : nat, ftest2 n m <= 2.
intros n m.
functional induction ftest2 n m; simpl; intros; auto.
Qed.
Function ftest3 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match m with
| O => ftest3 p 0
| S r => 0
end
end.
Lemma test3' : forall n m : nat, ftest3 n m <= 2.
intros n m.
functional induction ftest3 n m.
intros.
auto.
intros.
auto.
intros.
simpl.
auto.
Qed.
Function ftest5 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match m with
| O => ftest5 p 0
| S r => ftest5 p r
end
end.
Lemma test5 : forall n m : nat, ftest5 n m <= 2.
intros n m.
functional induction ftest5 n m.
intros.
auto.
intros.
auto.
intros.
simpl.
auto.
Qed.
Function ftest7 (n : nat) : nat :=
match ftest5 n 0 with
| O => 0
| S r => 0
end.
Lemma essai7 :
forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2)
(Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2)
(n : nat), ftest7 n <= 2.
intros hyp1 hyp2 n.
functional induction ftest7 n; auto.
Qed.
Function ftest6 (n m : nat) {struct n} : nat :=
match n with
| O => 0
| S p => match ftest5 p 0 with
| O => ftest6 p 0
| S r => ftest6 p r
end
end.
Lemma princ6 :
(forall n m : nat, n = 0 -> ftest6 0 m <= 2) ->
(forall n m p : nat,
ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) ->
(forall n m p r : nat,
ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) ->
forall x y : nat, ftest6 x y <= 2.
intros hyp1 hyp2 hyp3 n m.
generalize hyp1 hyp2 hyp3.
clear hyp1 hyp2 hyp3.
functional induction ftest6 n m; auto.
Qed.
Lemma essai6 : forall n m : nat, ftest6 n m <= 2.
intros n m.
functional induction ftest6 n m; simpl; auto.
Qed.
(* Some tests with modules *)
Module M.
Function test_m (n:nat) : nat :=
match n with
| 0 => 0
| S n => S (S (test_m n))
end.
Lemma test_m_is_double : forall n, div2 (test_m n) = n.
Proof.
intros n.
functional induction (test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
End M.
(* We redefine a new Function with the same name *)
Function test_m (n:nat) : nat :=
pred n.
Lemma test_m_is_pred : forall n, test_m n = pred n.
Proof.
intro n.
functional induction (test_m n). (* the test_m_ind to use is the last defined saying that test_m = pred*)
reflexivity.
Qed.
(* Checks if the dot notation are correctly treated in infos *)
Lemma M_test_m_is_double : forall n, div2 (M.test_m n) = n.
intro n.
(* here we should apply M.test_m_ind *)
functional induction (M.test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
Import M.
(* Now test_m is the one which defines double *)
Lemma test_m_is_double : forall n, div2 (M.test_m n) = n.
intro n.
(* here we should apply M.test_m_ind *)
functional induction (test_m n).
reflexivity.
simpl;rewrite IHn0;reflexivity.
Qed.
(* An example with projections *)
Require Import FunInd.
Require Import List.
Record foo (X:Type):= {a:nat; b:X}.
Inductive ind X: Type :=
| C: foo X -> ind X
| D: ind X -> ind X.
Function f X (deflt:X) (x:ind X) {struct x} :=
match x with
@C _ fo => match fo.(a X) with
O => fo.(b X)
| S n => deflt
end
| D _ d => f _ deflt d
end.
|