File: InversionSigma.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (226 lines) | stat: -rw-r--r-- 9,919 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
Section inversion_sigma.
  Local Unset Implicit Arguments.
  Context A (B B' : A -> Prop) (C C' : forall a, B a -> Prop)
          (D : forall a b, C a b -> Prop) (E : forall a b c, D a b c -> Prop).
  Context (AP : Prop) (BP BP' : AP -> Prop) (CP CP' : forall a, BP a -> Prop)
          (DP : forall a b, CP a b -> Prop) (EP : forall a b c, DP a b c -> Prop).

  (* Require that, after destructing sigma types and inverting
     equalities, we can subst equalities of variables only, and reduce
     down to [eq_refl = eq_refl]. *)
  Local Ltac destr_sigma :=
    repeat match goal with
           | [ H : ex _ |- _ ] => destruct H
           | [ H : sig _ |- _ ] => destruct H
           | [ H : sigT _ |- _ ] => destruct H
           | [ H : ex2 _ _ |- _ ] => destruct H
           | [ H : sig2 _ _ |- _ ] => destruct H
           | [ H : sigT2 _ _ |- _ ] => destruct H
           end; simpl in *.
  Local Ltac fin_test_inversion_sigma :=
    match goal with
    | [ |- eq_refl = eq_refl ] => reflexivity
    end.
  Local Ltac test_inversion_sigma :=
    intros;
    destr_sigma;
    inversion_sigma;
    repeat match goal with
           | [ H : ?x = ?y |- _ ] => is_var x; is_var y; subst x; simpl in *
           end;
    fin_test_inversion_sigma.

  Local Ltac test_inversion_sigma_in_H :=
    intros;
    destr_sigma;
    repeat match goal with H : _ = _ |- _ => inversion_sigma H end;
    repeat match goal with
           | [ H : ?x = ?y |- _ ] => is_var x; is_var y; subst x; simpl in *
           end;
    fin_test_inversion_sigma.

  Goal forall (x y : { a : A & { b : { b : B a & C a b } & { d : D a (projT1 b) (projT2 b) & E _ _ _ d } } })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [-> p]; cbn [eq_rect] in *.
    lazymatch type of p with
    | existT _ (existT _ ?a ?b) (existT _ ?c ?d) = existT _ (existT _ ?e ?f) (existT _ ?g ?h)
      => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f; is_var g; is_var h
    end.
    inversion_sigma p as [p1 p2].
    lazymatch type of p1 with existT _ ?a ?b = existT _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p1 as [-> <-]; cbn [eq_rect eq_existT_uncurried eq_sigT eq_existT_curried eq_sigT_uncurried] in * |- .
    lazymatch type of p2 with existT _ ?a ?b = existT _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p2 as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : A | { b : { b : B a | C a b } | { d : D a (proj1_sig b) (proj2_sig b) | E _ _ _ d } } })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [-> p]; cbn [eq_rect] in *.
    lazymatch type of p with
    | exist _ (exist _ ?a ?b) (exist _ ?c ?d) = exist _ (exist _ ?e ?f) (exist _ ?g ?h)
      => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f; is_var g; is_var h
    end.
    inversion_sigma p as [p1 p2].
    lazymatch type of p1 with exist _ ?a ?b = exist _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p1 as [-> <-]; cbn [eq_rect eq_exist_uncurried eq_sig eq_exist_curried eq_sig_uncurried] in * |- .
    lazymatch type of p2 with exist _ ?a ?b = exist _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p2 as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : exists a : AP, exists b : exists b : BP a, CP a b, exists d : DP a (ex_proj1 b) (ex_proj2 b), EP _ _ _ d)
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [-> p]; cbn [eq_rect] in *.
    lazymatch type of p with
    | ex_intro _ (ex_intro _ ?a ?b) (ex_intro _ ?c ?d) = ex_intro _ (ex_intro _ ?e ?f) (ex_intro _ ?g ?h)
      => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f; is_var g; is_var h
    end.
    inversion_sigma p as [p1 p2].
    lazymatch type of p1 with ex_intro _ ?a ?b = ex_intro _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p1 as [-> <-]; cbn [eq_rect eq_ex_intro_uncurried eq_ex_intro eq_ex eq_ex_uncurried] in * |- .
    lazymatch type of p2 with ex_intro _ ?a ?b = ex_intro _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p2 as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : { a : A & B a } & C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with existT _ ?a ?b = existT _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : { a : A & B a } | C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with existT _ ?a ?b = existT _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : exists2 a : exists a : AP, BP a, CP _ (ex_proj2 a) & CP' _ (ex_proj2 a))
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with ex_intro _ ?a ?b = ex_intro _ ?c ?d => is_var a; is_var b; is_var c; is_var d end.
    inversion_sigma p as [-> <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } & C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with existT2 _ _ ?a ?b ?c = existT2 _ _ ?d ?e ?f => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f end.
    inversion_sigma p as [-> <- <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } | C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with existT2 _ _ ?a ?b ?c = existT2 _ _ ?d ?e ?f => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f end.
    inversion_sigma p as [-> <- <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : exists2 a : exists2 a : AP, BP a & BP' a, CP _ (ex_proj2 (ex_of_ex2 a)) & CP' _ (ex_proj2 (ex_of_ex2 a)))
              (p : x = y), p = p.
  Proof.
    intros x y p; destr_sigma.
    inversion_sigma p as [p <- <-]; cbn [eq_rect] in *.
    lazymatch type of p with ex_intro2 _ _ ?a ?b ?c = ex_intro2 _ _ ?d ?e ?f => is_var a; is_var b; is_var c; is_var d; is_var e; is_var f end.
    inversion_sigma p as [-> <- <-].
    cbn.
    fin_test_inversion_sigma.
  Qed.

  Goal forall (x y : { a : A & { b : { b : B a & C a b } & { d : D a (projT1 b) (projT2 b) & E _ _ _ d } } })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : { a : A | { b : { b : B a | C a b } | { d : D a (proj1_sig b) (proj2_sig b) | E _ _ _ d } } })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : exists a : AP, exists b : exists b : BP a, CP a b, exists d : DP a (ex_proj1 b) (ex_proj2 b), EP _ _ _ d)
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : { a : { a : A & B a } & C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : { a : { a : A & B a } | C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } | C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } | C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.

  Goal forall (x y : exists2 a : exists2 a : AP, BP a & BP' a, CP _ (ex_proj2 (ex_of_ex2 a)) & CP' _ (ex_proj2 (ex_of_ex2 a)))
              (p : x = y), p = p.
  Proof. test_inversion_sigma. Qed.


  Goal forall (x y : { a : A & { b : { b : B a & C a b } & { d : D a (projT1 b) (projT2 b) & E _ _ _ d } } })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : { a : A | { b : { b : B a | C a b } | { d : D a (proj1_sig b) (proj2_sig b) | E _ _ _ d } } })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : exists a : AP, exists b : exists b : BP a, CP a b, exists d : DP a (ex_proj1 b) (ex_proj2 b), EP _ _ _ d)
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : { a : { a : A & B a } & C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : { a : { a : A & B a } | C _ (projT2 a) & C' _ (projT2 a) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } | C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : { a : { a : A & B a & B' a } | C _ (projT2 (sigT_of_sigT2 a)) & C' _ (projT2 (sigT_of_sigT2 a)) })
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.

  Goal forall (x y : exists2 a : exists2 a : AP, BP a & BP' a, CP _ (ex_proj2 (ex_of_ex2 a)) & CP' _ (ex_proj2 (ex_of_ex2 a)))
              (p : x = y), p = p.
  Proof. test_inversion_sigma_in_H. Qed.
End inversion_sigma.