File: ROmega0.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (170 lines) | stat: -rw-r--r-- 2,784 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
Require Import ZArith Lia.
Open Scope Z_scope.

(* Pierre L: examples gathered while debugging romega. *)
(* Starting from Coq 8.9 (late 2018), `romega` tactics are deprecated.
   The tests in this file remain but now call the `lia` tactic. *)

Lemma test_lia_0 :
 forall m m',
  0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros.
lia.
Qed.

Lemma test_lia_0b :
 forall m m',
  0<= m <= 1 -> 0<= m' <= 1 -> (0 < m <-> 0 < m') -> m = m'.
Proof.
intros m m'.
lia.
Qed.

Lemma test_lia_1 :
 forall (z z1 z2 : Z),
    z2 <= z1 ->
    z1 <= z2 ->
    z1 >= 0 ->
    z2 >= 0 ->
    z1 >= z2 /\ z = z1 \/ z1 <= z2 /\ z = z2 ->
    z >= 0.
Proof.
intros.
lia.
Qed.

Lemma test_lia_1b :
 forall (z z1 z2 : Z),
    z2 <= z1 ->
    z1 <= z2 ->
    z1 >= 0 ->
    z2 >= 0 ->
    z1 >= z2 /\ z = z1 \/ z1 <= z2 /\ z = z2 ->
    z >= 0.
Proof.
intros z z1 z2.
lia.
Qed.

Lemma test_lia_2 : forall a b c:Z,
 0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros.
lia.
Qed.

Lemma test_lia_2b : forall a b c:Z,
 0<=a-b<=1 -> b-c<=2 -> a-c<=3.
Proof.
intros a b c.
lia.
Qed.

Lemma test_lia_3 : forall a b h hl hr ha hb,
 0 <= ha - hl <= 1 ->
 -2 <= hl - hr <= 2 ->
 h =b+1 ->
 (ha >= hr /\ a = ha \/ ha <= hr /\ a = hr) ->
 (hl >= hr /\ b = hl \/ hl <= hr /\ b = hr) ->
 (-3 <= ha -hr <=3 -> 0 <= hb - a <= 1) ->
 (-2 <= ha-hr <=2 -> hb = a  + 1) ->
 0 <= hb - h <= 1.
Proof.
intros.
lia.
Qed.

Lemma test_lia_3b : forall a b h hl hr ha hb,
 0 <= ha - hl <= 1 ->
 -2 <= hl - hr <= 2 ->
 h =b+1 ->
 (ha >= hr /\ a = ha \/ ha <= hr /\ a = hr) ->
 (hl >= hr /\ b = hl \/ hl <= hr /\ b = hr) ->
 (-3 <= ha -hr <=3 -> 0 <= hb - a <= 1) ->
 (-2 <= ha-hr <=2 -> hb = a  + 1) ->
 0 <= hb - h <= 1.
Proof.
intros a b h hl hr ha hb.
lia.
Qed.


Lemma test_lia_4 : forall hr ha,
 ha = 0 ->
 (ha = 0 -> hr =0) ->
 hr = 0.
Proof.
intros hr ha.
lia.
Qed.

Lemma test_lia_5 : forall hr ha,
 ha = 0 ->
 (~ha = 0 \/ hr =0) ->
 hr = 0.
Proof.
intros hr ha.
lia.
Qed.

Lemma test_lia_6 : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros.
lia.
Qed.

Lemma test_lia_6b : forall z, z>=0 -> 0>z+2 -> False.
Proof.
intros z.
lia.
Qed.

Lemma test_lia_7 : forall z,
  0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
lia.
Qed.

Lemma test_lia_7b : forall z,
  0>=0 /\ z=0 \/ 0<=0 /\ z =0 -> 1 = z+1.
Proof.
intros.
lia.
Qed.

(* Magaud BZ#240 *)

Lemma test_lia_8 : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
Proof.
intros.
lia.
Qed.

Lemma test_lia_8b : forall x y:Z, x*x<y*y-> ~ y*y <= x*x.
Proof.
intros x y.
lia.
Qed.

(* Besson BZ#1298 *)

Lemma test_lia9 : forall z z':Z, z<>z' -> z'=z -> False.
Proof.
intros.
lia.
Qed.

(* Letouzey, May 2017 *)

Lemma test_lia10 : forall x a a' b b',
 a' <= b ->
 a <= b' ->
 b < b' ->
 a < a' ->
 a <= x < b' <-> a <= x < b \/ a' <= x < b'.
Proof.
 intros.
 lia.
Qed.