1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(************************************************************************)
Lemma essai : forall x : nat, x = x.
refine
((fun x0 : nat => match x0 with
| O => _
| S p => _
end)).
Restart.
refine
(fun x0 : nat => match x0 as n return (n = n) with
| O => _
| S p => _
end). (* OK *)
Restart.
refine
(fun x0 : nat => match x0 as n return (n = n) with
| O => _
| S p => _
end). (* OK *)
Restart.
(**
Refine [x0:nat]Cases x0 of O => ? | (S p) => ? end. (* cannot be executed *)
**)
Abort.
(************************************************************************)
Lemma T : nat.
refine (S _).
Abort.
(************************************************************************)
Lemma essai2 : forall x : nat, x = x.
refine (fix f (x : nat) : x = x := _).
Restart.
refine
(fix f (x : nat) : x = x :=
match x as n return (n = n :>nat) with
| O => _
| S p => _
end).
Restart.
refine
(fix f (x : nat) : x = x :=
match x as n return (n = n) with
| O => _
| S p => _
end).
Restart.
refine
(fix f (x : nat) : x = x :=
match x as n return (n = n :>nat) with
| O => _
| S p => f_equal S _
end).
Restart.
refine
(fix f (x : nat) : x = x :=
match x as n return (n = n :>nat) with
| O => _
| S p => f_equal S _
end).
Abort.
(************************************************************************)
Parameter f : nat * nat -> nat -> nat.
Lemma essai : nat.
refine (f _ ((fun x : nat => _:nat) 0)).
Restart.
refine (f _ 0).
Abort.
(************************************************************************)
Parameter P : nat -> Prop.
Lemma essai : {x : nat | x = 1}.
refine (exist _ 1 _). (* ECHEC *)
Restart.
(* mais si on contraint par le but alors ca marche : *)
(* Remarque : on peut toujours faire ça *)
refine (exist _ 1 _:{x : nat | x = 1}).
Restart.
refine (exist (fun x : nat => x = 1) 1 _).
Abort.
(************************************************************************)
Lemma essai : forall n : nat, {x : nat | x = S n}.
refine
(fun n : nat =>
match n return {x : nat | x = S n} with
| O => _
| S p => _
end).
Restart.
refine
(fun n : nat => match n with
| O => _
| S p => _
end).
Restart.
refine
(fun n : nat =>
match n return {x : nat | x = S n} with
| O => _
| S p => _
end).
Restart.
refine
(fix f (n : nat) : {x : nat | x = S n} :=
match n return {x : nat | x = S n} with
| O => _
| S p => _
end).
Restart.
refine
(fix f (n : nat) : {x : nat | x = S n} :=
match n return {x : nat | x = S n} with
| O => _
| S p => _
end).
exists 1. trivial.
elim (f p).
refine
(fun (x : nat) (h : x = S p) => exist (fun x : nat => x = S (S p)) (S x) _).
rewrite h. auto.
Qed.
(* Quelques essais de recurrence bien fondée *)
Require Import Init.Wf.
Require Import Wf_nat.
Lemma essai_wf : nat -> nat.
refine
(fun x : nat =>
well_founded_induction _ (fun _ : nat => nat -> nat)
(fun (phi0 : nat) (w : forall phi : nat, phi < phi0 -> nat -> nat) =>
w x _) x x).
exact lt_wf.
Abort.
Require Import Arith_base.
Lemma fibo : nat -> nat.
refine
(well_founded_induction _ (fun _ : nat => nat)
(fun (x0 : nat) (fib : forall x : nat, x < x0 -> nat) =>
match zerop x0 with
| left _ => 1
| right h1 =>
match zerop (pred x0) with
| left _ => 1
| right h2 => fib (pred x0) _ + fib (pred (pred x0)) _
end
end)).
exact lt_wf.
auto with arith.
apply Nat.lt_trans with (m := pred x0); auto with arith.
Qed.
|