1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
|
Lemma foo1 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.
Lemma foo2 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.
Set Universe Polymorphism.
Lemma foo3 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.
Lemma foo4 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.
|