File: abstract_chain.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (43 lines) | stat: -rw-r--r-- 885 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Lemma foo1 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.

Lemma foo2 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.

Set Universe Polymorphism.

Lemma foo3 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.

Lemma foo4 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.