1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
(* Test apply in *)
Goal (forall x y, x = S y -> y=y) -> 2 = 4 -> 3=3.
intros H H0.
apply H in H0.
assumption.
Qed.
Require Import ZArith.
Goal (forall x y z, ~ z <= 0 -> x * z < y * z -> x <= y)%Z.
intros; apply Znot_le_gt, Z.gt_lt in H.
apply Zmult_lt_reg_r, Z.lt_le_incl in H0; auto.
Qed.
(* Test application under tuples *)
Goal (forall x, x=0 <-> 0=x) -> 1=0 -> 0=1.
intros H H'.
apply H in H'.
exact H'.
Qed.
(* Test as clause *)
Goal (forall x, x=0 <-> (0=x /\ True)) -> 1=0 -> True.
intros H H'.
apply H in H' as (_,H').
exact H'.
Qed.
(* Test application modulo conversion *)
Goal (forall x, id x = 0 -> 0 = x) -> 1 = id 0 -> 0 = 1.
intros H H'.
apply H in H'.
exact H'.
Qed.
(* Check apply/eapply distinction in presence of open terms *)
Parameter h : forall x y z : nat, x = z -> x = y.
Arguments h {x y}.
Goal 1 = 0 -> True.
intro H.
apply h in H || exact I.
Qed.
Goal False -> 1 = 0.
intro H.
apply h || contradiction.
Qed.
(* Check if it unfolds when there are not enough premises *)
Goal forall n, n = S n -> False.
intros.
apply n_Sn in H.
assumption.
Qed.
(* Check naming in with bindings: do not rename *)
Notation S':=S (only parsing).
Goal (forall S, S = S' S) -> (forall S, S = S' S).
intros.
apply H with (S := S).
Qed.
(* Check inference of implicit arguments in bindings *)
Goal exists y : nat -> Type, y 0 = y 0.
exists (fun x => True).
trivial.
Qed.
(* Check universe handling in typed unificationn *)
Definition E := Type.
Goal exists y : E, y = y.
exists Prop.
trivial.
Qed.
Parameter Eq : Prop = (Prop -> Prop) :> E.
Goal Prop.
rewrite Eq.
Abort.
(* Check insertion of coercions in bindings *)
Coercion eq_true : bool >-> Sortclass.
Goal exists A:Prop, A = A.
exists true.
trivial.
Qed.
(* Check use of unification of bindings types in specialize *)
Module Type Test.
Parameter P : nat -> Prop.
Parameter L : forall (l : nat), P l -> P l.
Goal P 0 -> True.
intros.
specialize L with (1:=H).
Abort.
End Test.
(* Two examples that show that hnf_constr is used when unifying types
of bindings (a simplification of a script from Field_Theory) *)
Require Import List.
Open Scope list_scope.
Fixpoint P (l : list nat) : Prop :=
match l with
| nil => True
| e1 :: nil => e1 = e1
| e1 :: l1 => e1 = e1 /\ P l1
end.
Parameter L : forall n l, P (n::l) -> P l.
Goal forall (x:nat) l, P (x::l) -> P l.
intros.
apply L with (1:=H).
Qed.
Goal forall (x:nat) l, match l with nil => x=x | _::_ => x=x /\ P l end -> P l.
intros.
apply L with (1:=H).
Qed.
(* The following call to auto fails if the type of the clause
associated to the H is not beta-reduced [but apply H works]
(a simplification of a script from FSetAVL) *)
Definition apply (f:nat->Prop) := forall x, f x.
Goal apply (fun n => n=0) -> 1=0.
intro H.
auto.
Qed.
(* The following fails if the coercion Zpos is not introduced around p
before trying a subterm that matches the left-hand-side of the equality
(a simplication of an example taken from Nijmegen/QArith) *)
Require Import ZArith.
Coercion Zpos : positive >-> Z.
Parameter f : Z -> Z -> Z.
Parameter g : forall q1 q2 p : Z, f (f q1 p) (f q2 p) = Z0.
Goal forall p q1 q2, f (f q1 (Zpos p)) (f q2 (Zpos p)) = Z0.
intros; rewrite g with (p:=p).
reflexivity.
Qed.
(* A funny example where the behavior differs depending on which of a
multiple solution to a unification problem is chosen (an instance
of this case can be found in the proof of Buchberger.BuchRed.nf_divp) *)
Definition succ x := S x.
Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
(forall x y, P x -> Q x y) ->
(forall x, P (S x)) -> forall y: I (S 0), Q (succ 0) y.
intros.
apply H with (y:=y).
(* [x] had two possible instances: [S 0], coming from unifying the
type of [y] with [I ?n] and [succ 0] coming from the unification with
the goal; only the first one allows the next apply (which
does not work modulo delta) work *)
apply H0.
Qed.
(* A similar example with a arbitrary long conversion between the two
possible instances *)
Fixpoint compute_succ x :=
match x with O => S 0 | S n => S (compute_succ n) end.
Goal forall (I : nat -> Set) (P : nat -> Prop) (Q : forall n:nat, I n -> Prop),
(forall x y, P x -> Q x y) ->
(forall x, P (S x)) -> forall y: I (S 100), Q (compute_succ 100) y.
intros.
apply H with (y:=y).
apply H0.
Qed.
(* Another example with multiple convertible solutions to the same
metavariable (extracted from Algebra.Hom_module.Hom_module, 10th
subgoal which precisely fails) *)
Definition ID (A:Type) := A.
Goal forall f:Type -> Type,
forall (P : forall A:Type, A -> Prop),
(forall (B:Type) x, P (f B) x -> P (f B) x) ->
(forall (A:Type) x, P (f (f A)) x) ->
forall (A:Type) (x:f (f A)), P (f (ID (f A))) x.
intros.
apply H.
(* The parameter [B] had two possible instances: [ID (f A)] by direct
unification and [f A] by unification of the type of [x]; only the
first choice makes the next command fail, as it was
(unfortunately?) in Hom_module *)
try apply H.
unfold ID; apply H0.
Qed.
(* Test hyp in "apply -> ... in hyp" is correctly instantiated by Ltac *)
Goal (True <-> False) -> True -> False.
intros Heq H.
match goal with [ H : True |- _ ] => apply -> Heq in H end.
Abort.
(* Test coercion below product and on non meta-free terms in with bindings *)
(* Cf wishes #1408 from E. Makarov *)
Parameter bool_Prop :> bool -> Prop.
Parameter r : bool -> bool -> bool.
Axiom ax : forall (A : Set) (R : A -> A -> Prop) (x y : A), R x y.
Theorem t : r true false.
apply ax with (R := r).
Qed.
(* Check verification of type at unification (submitted by Stéphane Lengrand):
without verification, the first "apply" works what leads to the incorrect
instantiation of x by Prop *)
Theorem u : ~(forall x:Prop, ~x).
unfold not.
intro.
eapply H.
apply (forall B:Prop,B->B) || (instantiate (1:=True); exact I).
Defined.
(* Fine-tuning coercion insertion in presence of unfolding (bug #1883) *)
Parameter name : Set.
Definition atom := name.
Inductive exp : Set :=
| var : atom -> exp.
Coercion var : atom >-> exp.
Axiom silly_axiom : forall v : exp, v = v -> False.
Lemma silly_lemma : forall x : atom, False.
intros x.
apply silly_axiom with (v := x). (* fails *)
reflexivity.
Qed.
(* Check that unification does not commit too early to a representative
of an eta-equivalence class that would be incompatible with other
unification constraints *)
Lemma eta : forall f : (forall P, P 1),
(forall P, f P = f P) ->
forall Q, f (fun x => Q x) = f (fun x => Q x).
intros.
apply H.
Qed.
(* Test propagation of evars from subgoal to brother subgoals *)
(* This works because unfold calls clos_norm_flags which calls nf_evar *)
Lemma eapply_evar_unfold : let x:=O in O=x -> 0=O.
intros x H; eapply eq_trans;
[apply H | unfold x;match goal with |- ?x = ?x => reflexivity end].
Qed.
(* Test non-regression of (temporary) bug 1981 *)
Goal exists n : nat, True.
eapply ex_intro.
exact O.
trivial.
Qed.
(* Check pattern-unification on evars in apply unification *)
Lemma evar : exists f : nat -> nat, forall x, f x = 0 -> x = 0.
Proof.
eexists; intros x H.
apply H.
Qed.
(* Check that "as" clause applies to main premise only and leave the
side conditions away *)
Lemma side_condition :
forall (A:Type) (B:Prop) x, (True -> B -> x=0) -> B -> x=x.
Proof.
intros.
apply H in H0 as ->.
reflexivity.
exact I.
Qed.
(* Check that "apply" is chained on the last subgoal of each lemma and
that side conditions come first (as it is the case since 8.2) *)
Lemma chaining :
forall A B C : Prop,
(1=1 -> (2=2 -> A -> B) /\ True) ->
(3=3 -> (True /\ (4=4 -> C -> A))) -> C -> B.
Proof.
intros.
apply H, H0.
exact (refl_equal 1).
exact (refl_equal 2).
exact (refl_equal 3).
exact (refl_equal 4).
assumption.
Qed.
(* Check that the side conditions of "apply in", even when chained and
used through conjunctions, come last (as it is the case for single
calls to "apply in" w/o destruction of conjunction since 8.2) *)
Lemma chaining_in :
forall A B C : Prop,
(1=1 -> True /\ (B -> 2=2 -> 5=0)) ->
(3=3 -> (A -> 4=4 -> B) /\ True) -> A -> 0=5.
Proof.
intros.
apply H0, H in H1 as ->.
exact (refl_equal 0).
exact (refl_equal 1).
exact (refl_equal 2).
exact (refl_equal 3).
exact (refl_equal 4).
Qed.
(* From 12612, Dec 2009, descent in conjunctions is more powerful *)
(* The following, which was failing badly in bug 1980, is now
properly rejected, as descend in conjunctions builds an
ill-formed elimination from Prop to the domain of ex which is in Type. *)
Goal True.
Fail eapply ex_intro.
exact I.
Qed.
Goal True.
Fail eapply (ex_intro _).
exact I.
Qed.
(* No failure here, because the domain of ex is in Prop *)
Goal True.
eapply (ex_intro (fun _ => 0=0) I).
reflexivity.
Qed.
Goal True.
eapply (ex_intro (fun _ => 0=0) I _).
Unshelve. (* In 8.4: Grab Existential Variables. *)
reflexivity.
Qed.
Goal True.
eapply (fun (A:Prop) (x:A) => conj I x).
Unshelve. (* In 8.4: the goal ?A was there *)
exact I.
Qed.
(* The following was not accepted from r12612 to r12657 *)
Record sig0 := { p1 : nat; p2 : p1 = 0 }.
Goal forall x : sig0, p1 x = 0.
intro x;
apply x.
Qed.
(* The following worked in 8.2 but was not accepted from r12229 to
r12926 because "simple apply" started to use pattern unification of
evars. Evars pattern unification for simple (e)apply was disabled
in 12927 but "simple eapply" below worked from 12898 to 12926
because pattern-unification also started supporting abstraction
over Metas. However it did not find the "simple" solution and hence
the subsequent "assumption" failed. *)
Goal exists f:nat->nat, forall x y, x = y -> f x = f y.
intros; eexists; intros.
simple eapply (@f_equal nat).
assumption.
Unshelve.
exact (fun x => x).
Qed.
(* The following worked in 8.2 but was not accepted from r12229 to
r12897 for the same reason because eauto uses "simple apply". It
worked from 12898 to 12926 because eauto uses eassumption and not
assumption. *)
Goal exists f:nat->nat, forall x y, x = y -> f x = f y.
intros; eexists; intros.
eauto.
Unshelve.
exact (fun x => x).
Qed.
(* The following was accepted before r12612 but is still not accepted in r12658
Goal forall x : { x:nat | x = 0}, proj1_sig x = 0.
intro x;
apply x.
*)
Section A.
Variable map : forall (T1 T2 : Type) (f : T1 -> T2) (t11 t12 : T1),
identity (f t11) (f t12).
Variable mapfuncomp : forall (X Y Z : Type) (f : X -> Y) (g : Y -> Z) (x x' : X),
identity (map Y Z g (f x) (f x')) (map X Z (fun x0 : X => g (f x0)) x x').
Goal forall X:Type, forall Y:Type, forall f:X->Y, forall x : X, forall x' : X,
forall g : Y -> X,
let gf := (fun x : X => g (f x)) : X -> X in
identity (map Y X g (f x) (f x')) (map X X gf x x').
intros.
apply mapfuncomp.
Abort.
End A.
(* Check "with" clauses refer to names as they are printed *)
Definition hide p := forall n:nat, p = n.
Goal forall n, (forall n, n=0) -> hide n -> n=0.
unfold hide.
intros n H H'.
(* H is displayed as (forall n, n=0) *)
apply H with (n:=n).
Undo.
(* H' is displayed as (forall n0, n=n0) *)
apply H' with (n:=0).
Qed.
(* Check that evars originally present in goal do not prevent apply in to work*)
Goal (forall x, x <= 0 -> x = 0) -> exists x, x <= 0 -> 0 = 0.
intros.
eexists.
intros.
apply H in H0.
Abort.
(* Check correct failure of apply in when hypothesis is dependent *)
Goal forall H:0=0, H = H.
intros.
Fail apply eq_sym in H.
Abort.
(* Check that unresolved evars not originally present in goal prevent
apply in to work*)
Goal (forall x y, x <= 0 -> x + y = 0) -> exists x, x <= 0 -> 0 = 0.
intros.
eexists.
intros.
Fail apply H in H0.
Abort.
(* Check naming pattern in apply in *)
Goal ((False /\ (True -> True))) -> True -> True.
intros F H.
apply F in H as H0. (* Check that H0 is not used internally *)
exact H0.
Qed.
Goal ((False /\ (True -> True/\True))) -> True -> True/\True.
intros F H.
apply F in H as (?,?).
split.
exact H. (* Check that generated names are H and H0 *)
exact H0.
Qed.
(* This failed at some time in between 18 August 2014 and 2 September 2014 *)
Goal forall A B C: Prop, (True -> A -> B /\ C) -> A -> B.
intros * H.
apply H.
Abort.
(* This failed between 2 and 3 September 2014 *)
Goal forall A B C D:Prop, (A<->B)/\(C<->D) -> A -> B.
intros.
apply H in H0.
pose proof I as H1. (* Test that H1 does not exist *)
Abort.
Goal forall A B C D:Prop, (A<->B)/\(C<->D) -> A.
intros.
apply H.
pose proof I as H0. (* Test that H0 does not exist *)
Abort.
(* The first example below failed at some time in between 18 August
2014 and 2 September 2014 *)
Goal forall x, 2=0 -> x+1=2 -> (forall x, S x = 0) -> True.
intros x H H0 H1.
eapply eq_trans in H. 2:apply H0.
rewrite H1 in H.
change (x+0=0) in H. (* Check the result in H1 *)
Abort.
Goal forall x, 2=x+1 -> (forall x, S x = 0) -> 2 = 0.
intros x H H0.
eapply eq_trans. apply H.
rewrite H0.
change (x+0=0).
Abort.
Goal (forall x y, x <= y -> y + x = 0 /\ True) -> exists x y, (x <= 0 -> y <= 1 -> 0 = 0 /\ 1 = 0).
intros.
do 2 eexists.
intros.
eapply H in H0 as (H0,_), H1 as (H1,_).
split.
- exact H0.
- exact H1.
Qed.
(* 2nd order apply used to have delta on local definitions even though
it does not have delta on global definitions; keep it by
compatibility while finding a more uniform way to proceed. *)
Goal forall f:nat->nat, (forall P x, P (f x)) -> let x:=f 0 in x = 0.
intros f H x.
apply H.
Qed.
(* Test that occur-check is not too restrictive (see comments of #3141) *)
Lemma bar (X: nat -> nat -> Prop) (foo:forall x, X x x) (a: unit) (H: tt = a):
exists x, exists y, X x y.
Proof.
intros; eexists; eexists ?[y]; case H.
apply (foo ?y).
Unshelve.
exact 0.
Qed.
(* Test position of new hypotheses when using "apply ... in ... as ..." *)
Goal (True -> 0=0 /\ True) -> True -> False -> True/\0=0.
intros H H0 H1.
apply H in H0 as (a,b).
(* clear H1:False *) match goal with H:_ |- _ => clear H end.
split.
- (* use b:True *) match goal with H:_ |- _ => exact H end.
- (* clear b:True *) match goal with H:_ |- _ => clear H end.
(* use a:0=0 *) match goal with H:_ |- _ => exact H end.
Qed.
(* Test choice of most dependent solution *)
Goal forall n, n = 0 -> exists p, p = n /\ p = 0.
intros. eexists ?[p]. split. rewrite H.
reflexivity. (* Compatibility tells [?p:=n] rather than [?p:=0] *)
exact H. (* this checks that the goal is [n=0], not [0=0] *)
Qed.
(* Check insensitivity to alphabetic order of names*)
(* In both cases, the last name is conventionally chosen *)
(* Before 8.9, the name coming first in alphabetic order *)
(* was chosen. *)
Goal forall m n, m = n -> n = 0 -> exists p, p = n /\ p = 0.
intros. eexists ?[p]. split. rewrite H.
reflexivity.
exact H0.
Qed.
Goal forall n m, n = m -> m = 0 -> exists p, p = m /\ p = 0.
intros. eexists ?[p]. split. rewrite H.
reflexivity.
exact H0.
Qed.
(* apply and side conditions: we check that apply in iterates only on
the main subgoals *)
Goal (forall x, x=0 -> x>=0 -> x<=0 \/ x<=1) -> 0>=0 -> 1>=0 -> 1=0 -> True.
intros f H H0 H1.
apply f in H as [], H0 as [].
1-3: change (0 <= 0) in H.
4-6: change (0 <= 1) in H.
1: change (1 <= 0) in H0.
4: change (1 <= 0) in H0.
2: change (1 <= 1) in H0.
5: change (1 <= 1) in H0.
1-2,4-5: exact I.
1,2: exact H1.
change (0 >= 0) in H.
change (1 >= 0) in H0.
exact (eq_refl 0).
Qed.
|