1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
|
(* Some tests for contradiction *)
Lemma L1 : forall A B : Prop, A -> ~A -> B.
Proof.
intros; contradiction.
Qed.
Lemma L2 : forall A B : Prop, ~A -> A -> B.
Proof.
intros; contradiction.
Qed.
Lemma L3 : forall A : Prop, ~True -> A.
Proof.
intros; contradiction.
Qed.
Lemma L4 : forall A : Prop, forall x : nat, ~x=x -> A.
Proof.
intros; contradiction.
Qed.
Lemma L5 : forall A : Prop, forall x y : nat, ~x=y -> x=y -> A.
Proof.
intros; contradiction.
Qed.
Lemma L6 : forall A : Prop, forall x y : nat, x=y -> ~x=y -> A.
Proof.
intros; contradiction.
Qed.
|