1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
(* Submitted by Robert Schneck *)
Parameters A B C D : Prop.
Axiom X : A -> B -> C /\ D.
Lemma foo : A -> B -> C.
Proof.
intros.
destruct X. (* Should find axiom X and should handle arguments of X *)
assumption.
assumption.
assumption.
Qed.
(* Simplification of BZ#711 *)
Parameter f : true = false.
Goal let p := f in True.
intro p.
set (b := true) in *.
(* Check that it doesn't fail with an anomaly *)
(* Ultimately, adapt destruct to make it succeeding *)
try destruct b.
Abort.
(* Used to fail with error "n is used in conclusion" before revision 9447 *)
Goal forall n, n = S n.
induction S.
Abort.
(* Check that elimination with remaining evars do not raise an bad
error message *)
Theorem Refl : forall P, P <-> P. tauto. Qed.
Goal True.
case Refl || ecase Refl.
Abort.
(* Submitted by B. Baydemir (BZ#1882) *)
Require Import List.
Definition alist R := list (nat * R)%type.
Section Properties.
Variable A : Type.
Variable a : A.
Variable E : alist A.
Lemma silly : E = E.
Proof.
clear. induction E. (* this fails. *)
Abort.
End Properties.
(* This used not to work before revision 11944 *)
Goal forall P:(forall n, 0=n -> Prop), forall H: 0=0, P 0 H.
destruct H.
Abort.
(* The calls to "destruct" below did not work before revision 12356 *)
Parameter A0:Type.
Parameter P:A0->Type.
Require Import JMeq.
Goal forall a b (p:P a) (q:P b),
forall H:a = b, eq_rect a P p b H = q -> JMeq (existT _ a p) (existT _ b q).
intros.
destruct H.
destruct H0.
reflexivity.
Qed.
(* These did not work before 8.4 *)
Goal (exists x, x=0) -> True.
destruct 1 as (_,_); exact I.
Abort.
Goal (exists x, x=0 /\ True) -> True.
destruct 1 as (_,(_,H)); exact H.
Abort.
Goal (exists x, x=0 /\ True) -> True.
destruct 1 as (_,(_,x)); exact x.
Abort.
Goal let T:=nat in forall (x:nat) (g:T -> nat), g x = 0.
intros.
destruct (g _). (* This was failing in at least r14571 *)
Abort.
(* Check that subterm selection does not solve existing evars *)
Goal exists x, S x = S 0.
eexists ?[x].
Show x. (* Incidentally test Show on a named goal *)
destruct (S _). (* Incompatible occurrences but takes the first one since Oct 2014 *)
change (0 = S 0).
Abort.
Goal exists x, S 0 = S x.
eexists ?[x].
destruct (S _). (* Incompatible occurrences but takes the first one since Oct 2014 *)
change (0 = S ?x).
[x]: exact 0. (* Incidentally test applying a tactic to a goal on the shelve *)
Abort.
Goal exists n p:nat, (S n,S n) = (S p,S p) /\ p = n.
eexists ?[n]; eexists ?[p].
destruct (_, S _). (* Was unifying at some time in trunk, now takes the first occurrence *)
change ((n, n0) = (S ?p, S ?p) /\ ?p = ?n).
Abort.
(* An example with incompatible but convertible occurrences *)
Goal id (id 0) = 0.
Fail destruct (id _) at 1 2.
Abort.
(* Avoid unnatural selection of a subterm larger than expected *)
Goal let g := fun x:nat => x in g (S 0) = 0.
intro.
destruct S.
(* Check that it is not the larger subterm "g (S 0)" which is
selected, as it was the case in 8.4 *)
unfold g at 1.
Abort.
(* Some tricky examples convenient to support *)
Goal forall x, nat_rect (fun _ => nat) O (fun x y => S x) x = nat_rect (fun _ => nat) O (fun x y => S x) x.
intros.
destruct (nat_rect _ _ _ _).
Abort.
(* Check compatibility in selecting what is open or "shelved" *)
Goal (forall x, x=0 -> nat) -> True.
intros.
Fail destruct H.
edestruct H.
- reflexivity.
- exact Logic.I.
- exact Logic.I.
Qed.
(* Check an example which was working with case/elim in 8.4 but not with
destruct/induction *)
Goal forall x, (True -> x = 0) -> 0=0.
intros.
destruct H.
- trivial.
- apply (eq_refl x).
Qed.
(* Check an example which was working with case/elim in 8.4 but not with
destruct/induction (not the different order between induction/destruct) *)
Goal forall x, (True -> x = 0) -> 0=0.
intros.
induction H.
- apply (eq_refl x).
- trivial.
Qed.
(* This test assumes that destruct/induction on non-dependent hypotheses behave the same
when using holes or not
Goal forall x, (True -> x = 0) -> 0=0.
intros.
destruct (H _).
- apply I.
- apply (eq_refl x).
Qed.
*)
(* Check destruct vs edestruct *)
Goal forall x, (forall y, y = 0 -> x = 0) -> 0=0.
intros.
Fail destruct H.
edestruct H.
- trivial.
- apply (eq_refl x).
Qed.
Goal forall x, (forall y, y = 0 -> x = 0) -> 0=0.
intros.
Fail destruct (H _ _).
(* Now a test which assumes that edestruct on non-dependent
hypotheses accept unresolved subterms in the induction argument.
edestruct (H _ _).
- trivial.
- apply (eq_refl x).
Qed.
*)
Abort.
(* Test selection when not in an inductive type *)
Parameter T:Type.
Axiom elim: forall P, T -> P.
Goal forall a:T, a = a.
induction a using elim.
Qed.
Goal forall a:nat -> T, a 0 = a 1.
intro a.
induction (a 0) using elim.
Qed.
(* From Oct 2014, a subterm is found, as if without "using"; in 8.4,
it did not find a subterm *)
Goal forall a:nat -> T, a 0 = a 1.
intro a.
induction a using elim.
Qed.
Goal forall a:nat -> T, forall b, a 0 = b.
intros a b.
induction a using elim.
Qed.
(* From Oct 2014, first subterm is found; in 8.4, it failed because it
found "a 0" and wanted to clear a *)
Goal forall a:nat -> nat, a 0 = a 1.
intro a.
destruct a.
change (0 = a 1).
Abort.
(* This example of a variable not fully applied in the goal was working in 8.4*)
Goal forall H : 0<>0, H = H.
destruct H.
reflexivity.
Qed.
(* Check that variables not fully applied in the goal are not erased
(this example was failing in 8.4 because of a forbidden "clear H" in
the code of "destruct H" *)
Goal forall H : True -> True, H = H.
destruct H.
- exact I.
- reflexivity.
Qed.
(* Check destruct on idents with maximal implicit arguments - which did
not work in 8.4 *)
Parameter g : forall {n:nat}, n=n -> nat.
Goal g (eq_refl 0) = 0.
destruct g.
Abort.
(* This one was working in 8.4 (because of full conv on closed arguments) *)
Class E.
#[export] Instance a:E := {}.
Goal forall h : E -> nat -> nat, h (id a) 0 = h a 0.
intros.
destruct (h _).
change (0=0).
Abort.
(* This one was not working in 8.4 because an occurrence of f was
remaining, blocking the "clear f" *)
Goal forall h : E -> nat -> nat, h a 0 = h a 1.
intros.
destruct h.
Abort.
(* This was not working in 8.4 *)
Section S1.
Variables x y : Type.
Variable H : x = y.
Goal True.
destruct H. (* Was not working in 8.4 *)
(* Now check that H statement has itself be subject of the rewriting *)
change (x=x) in H.
Abort.
End S1.
(* This was not working in 8.4 because of untracked dependencies *)
Goal forall y, forall h:forall x, x = y, h 0 = h 0.
intros.
destruct (h 0).
Abort.
(* Check absence of useless local definitions *)
Section S2.
Variable H : 1=1.
Goal 0=1.
destruct H.
Fail clear n. (* Check that there is no n as it was in Coq <= 8.4 *)
Abort.
End S2.
Goal forall x:nat, x=x->x=1.
intros x H.
destruct H.
Fail clear n. (* Check that there is no n as it was in Coq <= 8.4 *)
Fail clear H. (* Check that H has been removed *)
Abort.
(* Check support for induction arguments which do not expose an inductive
type rightaway *)
Definition U := nat -> nat.
Definition S' := S : U.
Goal forall n, S' n = 0.
intro.
destruct S'.
Abort.
(* This was working by chance in 8.4 thanks to "accidental" use of select
subterms _syntactically_ equal to the first matching one.
Parameter f2:bool -> unit.
Parameter r2:f2 true=f2 true.
Goal forall (P: forall b, b=b -> Prop), f2 (id true) = tt -> P (f2 true) r2.
intros.
destruct f2.
Abort.
*)
(* This did not work in 8.4, because of a clear failing *)
Inductive IND : forall x y:nat, x=y -> Type := CONSTR : IND 0 0 eq_refl.
Goal forall x y e (h:x=y -> y=x) (z:IND y x (h e)), e = e /\ z = z.
intros.
destruct z.
Abort.
(* The two following examples show how the variables occurring in the
term being destruct affects the generalization; don't know if these
behaviors are "good". None of them was working in 8.4. *)
Goal forall x y e (t:x=y) (z:x=y -> IND y x e), e = e.
intros.
destruct (z t).
change (0=0) in t. (* Generalization made *)
Abort.
Goal forall x y e (t:x=y) (z:x=y -> IND y x e), e = e /\ z t = z t.
intros.
destruct (z t).
change (0=0) in t. (* Generalization made *)
Abort.
(* Check that destruct on a scheme with a functional argument works *)
Goal (forall P:Prop, (nat->nat) -> P) -> forall h:nat->nat, h 0 = h 0.
intros.
destruct h using H.
Qed.
Goal (forall P:Prop, (nat->nat) -> P) -> forall h:nat->nat->nat, h 0 0 = h 1 0.
intros.
induction (h 1) using H.
Qed.
(* Check blocking generalization is not too strong (failed at some time) *)
Goal (E -> 0=1) -> 1=0 -> True.
intros.
destruct (H _).
change (0=0) in H0. (* Check generalization on H0 was made *)
Abort.
(* Check absence of anomaly (failed at some time) *)
Goal forall A (a:A) (P Q:A->Prop), (forall a, P a -> Q a) -> True.
intros.
Fail destruct H.
Abort.
(* Check keep option (BZ#3791) *)
Goal forall b:bool, True.
intro b.
destruct (b).
clear b. (* b has to be here *)
Abort.
(* Check clearing of names *)
Inductive IND2 : nat -> Prop := CONSTR2 : forall y, y = y -> IND2 y.
Goal forall x y z:nat, y = z -> x = y -> y = x -> x = y.
intros * Heq H Heq'.
destruct H.
Abort.
Goal 2=1 -> 1=0.
intro H. destruct H.
Fail (match goal with n:nat |- _ => unfold n end). (* Check that no let-in remains *)
Abort.
(* Check clearing of names *)
Inductive eqnat (x : nat) : nat -> Prop :=
reflnat : forall y, x = y -> eqnat x y.
Goal forall x z:nat, x = z -> eqnat x z -> True.
intros * H1 H.
destruct H.
Fail clear z. (* Should not be here *)
Abort.
(* Check ok in the presence of an equation *)
Goal forall b:bool, b = b.
intros.
destruct b eqn:H.
Abort.
(* Check natural instantiation behavior when the goal has already an evar *)
Goal exists x, S x = x.
eexists ?[x].
destruct (S _).
change (0 = ?x).
Abort.
Goal (forall P, P 0 -> True/\True) -> True.
intro H.
destruct (H (fun x => True)).
match goal with |- True => idtac end.
Abort.
|