1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
(* The "?" of cons and eq should be inferred *)
Parameter list : Set -> Set.
Parameter cons : forall T : Set, T -> list T -> list T.
Check (forall n : list nat, exists l : _, (exists x : _, n = cons _ x l)).
(* Examples provided by Eduardo Gimenez *)
Definition c A (Q : (nat * A -> Prop) -> Prop) P :=
Q (fun p : nat * A => let (i, v) := p in P i v).
(* What does this test ? *)
Require Import List.
Definition list_forall_bool (A : Set) (p : A -> bool)
(l : list A) : bool :=
fold_right (fun a r => if p a then r else false) true l.
(* Checks that solvable ? in the lambda prefix of the definition are harmless*)
Parameter A1 A2 F B C : Set.
Parameter f : F -> A1 -> B.
Definition f1 frm0 a1 : B := f frm0 a1.
(* Checks that solvable ? in the type part of the definition are harmless *)
Definition f2 frm0 a1 : B := f frm0 a1.
(* Checks that sorts that are evars are handled correctly (BZ#705) *)
Require Import List.
Fixpoint build (nl : list nat) :
match nl with
| nil => True
| _ => False
end -> unit :=
match nl return (match nl with
| nil => True
| _ => False
end -> unit) with
| nil => fun _ => tt
| n :: rest =>
match n with
| O => fun _ => tt
| S m => fun a => build rest (False_ind _ a)
end
end.
(* Checks that disjoint contexts are correctly set by restrict_hyp *)
(* Bug de 1999 corrigé en déc 2004 *)
Check
(let p :=
fun (m : nat) f (n : nat) =>
match f m n with
| exist _ a b => exist _ a b
end in
p
:forall x : nat,
(forall y n : nat, {q : nat | y = q * n}) ->
forall n : nat, {q : nat | x = q * n}).
(* Check instantiation of nested evars (BZ#1089) *)
Check (fun f:(forall (v:Type->Type), v (v nat) -> nat) => f _ (Some (Some O))).
(* This used to fail with anomaly (Pp.str "evar was not declared.") in V8.0pl3 *)
Theorem contradiction : forall p, ~ p -> p -> False.
Proof. trivial. Qed.
#[export] Hint Resolve contradiction.
Goal False.
eauto.
Abort.
(* This used to fail in V8.1beta because first-order unification was
used before using type information *)
Check (exist _ O (refl_equal 0) : {n:nat|n=0}).
Check (exist _ O I : {n:nat|True}).
(* An example (initially from Marseille/Fairisle) that involves an evar with
different solutions (Input, Output or bool) that may or may not be
considered distinct depending on which kind of conversion is used *)
Section A.
Definition STATE := (nat * bool)%type.
Let Input := bool.
Let Output := bool.
Parameter Out : STATE -> Output.
Check fun (s : STATE) (reg : Input) => reg = Out s.
End A.
(* The return predicate found should be: "in _=U return U" *)
(* (feature already available in V8.0) *)
Definition g (T1 T2:Type) (x:T1) (e:T1=T2) : T2 :=
match e with
| refl_equal => x
end.
(* An example extracted from FMapAVL which (may) test restriction on
evars problems of the form ?n[args1]=?n[args2] with distinct args1
and args2 *)
Set Implicit Arguments.
Parameter t:Set->Set.
Parameter map:forall elt elt' : Set, (elt -> elt') -> t elt -> t elt'.
Parameter avl: forall elt : Set, t elt -> Prop.
Parameter bst: forall elt : Set, t elt -> Prop.
Parameter map_avl: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
avl m -> avl (map f m).
Parameter map_bst: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
bst m -> bst (map f m).
Record bbst (elt:Set) : Set :=
Bbst {this :> t elt; is_bst : bst this; is_avl: avl this}.
Definition t' := bbst.
Section B.
Variables elt elt': Set.
Definition map' f (m:t' elt) : t' elt' :=
Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
End B.
Unset Implicit Arguments.
(* An example from Lexicographic_Exponentiation that tests the
contraction of reducible fixpoints in type inference *)
Require Import List.
Check (fun (A:Set) (a b x:A) (l:list A)
(H : l ++ cons x nil = cons b (cons a nil)) =>
app_inj_tail l (cons b nil) _ _ H).
(* An example from NMake (simplified), that uses restriction in solve_refl *)
Parameter h:(nat->nat)->(nat->nat).
Fixpoint G p cont {struct p} :=
h (fun n => match p with O => cont | S p => G p cont end n).
(* An example from Bordeaux/Cantor that applies evar restriction
below a binder *)
Require Import Relations.
Parameter lex : forall (A B : Set), (forall (a1 a2:A), {a1=a2}+{a1<>a2})
-> relation A -> relation B -> A * B -> A * B -> Prop.
Check
forall (A B : Set) eq_A_dec o1 o2,
antisymmetric A o1 -> transitive A o1 -> transitive B o2 ->
transitive _ (lex _ _ eq_A_dec o1 o2).
(* Another example from Julien Forest that tests unification below binders *)
Require Import List.
Set Implicit Arguments.
Parameter
merge : forall (A B : Set) (eqA : forall (a1 a2 : A), {a1=a2}+{a1<>a2})
(eqB : forall (b1 b2 : B), {b1=b2}+{b1<>b2})
(partial_res l : list (A*B)), option (list (A*B)).
Axiom merge_correct :
forall (A B : Set) eqA eqB (l1 l2 : list (A*B)),
(forall a2 b2 c2, In (a2,b2) l2 -> In (a2,c2) l2 -> b2 = c2) ->
match merge eqA eqB l1 l2 with _ => True end.
Unset Implicit Arguments.
(* An example from Bordeaux/Additions that tests restriction below binders *)
Section Additions_while.
Variable A : Set.
Variables P Q : A -> Prop.
Variable le : A -> A -> Prop.
Hypothesis Q_dec : forall s : A, P s -> {Q s} + {~ Q s}.
Hypothesis le_step : forall s : A, ~ Q s -> P s -> {s' | P s' /\ le s' s}.
Hypothesis le_wf : well_founded le.
Lemma loopexec : forall s : A, P s -> {s' : A | P s' /\ Q s'}.
refine
(well_founded_induction_type le_wf (fun s => _ -> {s' : A | _ /\ _})
(fun s hr i =>
match Q_dec s i with
| left _ => _
| right _ =>
match le_step s _ _ with
| exist _ s' h' =>
match hr s' _ _ with
| exist _ s'' _ => exist _ s'' _
end
end
end)).
Abort.
End Additions_while.
(* Two examples from G. Melquiond (BZ#1878 and BZ#1884) *)
Parameter F1 G1 : nat -> Prop.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H)).
Abort.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H) _).
Abort.
(* An example from y-not that was failing in 8.2rc1 *)
Fixpoint filter (A:nat->Set) (l:list (sigT A)) : list (sigT A) :=
match l with
| nil => nil
| (existT _ k v)::l' => (existT _ k v):: (filter A l')
end.
(* BZ#2000: used to raise Out of memory in 8.2 while it should fail by
lack of information on the conclusion of the type of j *)
Goal True.
set (p:=fun j => j (or_intror _ (fun a:True => j (or_introl _ a)))) || idtac.
Abort.
(* Remark: the following example stopped succeeding at some time in
the development of 8.2 but it works again (this was because 8.2
algorithm was more general and did not exclude a solution that it
should have excluded for typing reason; handling of types and
backtracking is still to be done) *)
Section S.
Variables A B : nat -> Prop.
Goal forall x : nat, A x -> B x.
refine (fun x H => proj2 (_ x H) _).
Abort.
End S.
(* Check that constraints are taken into account by tactics that instantiate *)
Lemma inj : forall n m, S n = S m -> n = m.
intros n m H.
eapply f_equal with (* should fail because ill-typed *)
(f := fun n =>
match n return match n with S _ => nat | _ => unit end with
| S n => n
| _ => tt
end) in H
|| injection H.
Abort.
(* A legitimate simple eapply that was failing in coq <= 8.3.
Cf. in Unification.w_merge the addition of an extra pose_all_metas_as_evars
on 30/9/2010
*)
Lemma simple_eapply_was_failing :
(forall f:nat->nat, exists g, f = g) -> True.
Proof.
assert (modusponens : forall P Q, P -> (P->Q) -> Q) by auto.
intros.
eapply modusponens.
simple eapply H.
(* error message with V8.3 :
Impossible to unify "?18" with "fun g : nat -> nat => ?6 = g". *)
Abort.
(* Regression test *)
Definition fo : option nat -> nat := option_rec _ (fun a => 0) 0.
(* This example revealed an incorrect evar restriction at some time
around October 2011 *)
Goal forall (A:Type) (a:A) (P:forall A, A -> Prop), (P A a) /\ (P A a).
intros.
refine ((fun H => conj (proj1 H) (proj2 H)) _).
Abort.
(* The argument of e below failed to be inferred from r14219 (Oct 2011) to *)
(* r14753 after the restrictions made on detecting Miller's pattern in the *)
(* presence of alias, only the second-order unification procedure was *)
(* able to solve this problem but it was deactivated for 8.4 in r14219 *)
Definition k0
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) o :=
match o with (* note: match introduces an alias! *)
| Some a => e _ (j a)
| None => O
end.
Definition k1
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j a).
Definition k2
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b).
(* Other examples about aliases involved in pattern unification *)
Definition k3
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let a' := a in n = a') a (b:=a) := e _ (j b).
Definition k4
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let a' := S a in n = a') a (b:=a) := e _ (j b).
Definition k5
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, let a' := S a in exists n : nat, n = a') a (b:=a) := e _ (j b).
Definition k6
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let n' := S n in n' = a) a (b:=a) := e _ (j b).
Definition k7
(e:forall P : nat -> Prop, (exists n : nat, let n' := n in P n') -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b).
(* An example that uses materialize_evar under binders *)
(* Extracted from bigop.v in the mathematical components library *)
Section Bigop.
Variable bigop : forall R I: Type,
R -> (R -> R -> R) -> list I -> (I->Prop) -> (I -> R) -> R.
Hypothesis eq_bigr :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F1 F2 : I -> R),
(forall i : I, P i -> F1 i = F2 i) ->
bigop R I idx op r (fun i : I => P i) (fun i : I => F1 i) = idx.
Hypothesis big_tnth :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F : I -> R),
bigop R I idx op r (fun i : I => P i) (fun i : I => F i) = idx.
Hypothesis big_tnth_with_letin :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F : I -> R),
bigop R I idx op r (fun i : I => let i:=i in P i) (fun i : I => F i) = idx.
Variable R : Type.
Variable idx : R.
Variable op : R -> R -> R.
Variable I : Type.
Variable J : Type.
Variable rI : list I.
Variable rJ : list J.
Variable xQ : J -> Prop.
Variable P : I -> Prop.
Variable Q : I -> J -> Prop.
Variable F : I -> J -> R.
(* Check unification under binders *)
Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth _ _ _ _ rI _ _))
: (bigop R J idx op rJ
(fun j : J => let k:=j in xQ k)
(fun j : J => let k:=j in
bigop R I idx
op rI
(fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx.
(* Check also with let-in *)
Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth_with_letin _ _ _ _ rI _ _))
: (bigop R J idx op rJ
(fun j : J => let k:=j in xQ k)
(fun j : J => let k:=j in
bigop R I idx
op rI
(fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx.
End Bigop.
(* Check the use of (at least) an heuristic to solve problems of the form
"?x[t] = ?y" where ?y occurs in t without easily knowing if ?y can
eventually be erased in t *)
Section evar_evar_occur.
Variable id : nat -> nat.
Variable f : forall x, id x = 0 -> id x = 0 -> x = 1 /\ x = 2.
Variable g : forall y, id y = 0 /\ id y = 0.
(* Still evars in the resulting type, but constraints should be solved *)
Check match g _ with conj a b => f _ a b end.
End evar_evar_occur.
(* Eta expansion (BZ#2936) *)
Record iffT (X Y:Type) : Type := mkIff { iffLR : X->Y; iffRL : Y->X }.
Record tri (R:Type->Type->Type) (S:Type->Type->Type) (T:Type->Type->Type) := mkTri {
tri0 : forall a b c, R a b -> S a c -> T b c
}.
Arguments mkTri [R S T].
Definition tri_iffT : tri iffT iffT iffT :=
(mkTri
(fun X0 X1 X2 E01 E02 =>
(mkIff _ _ (fun x1 => iffLR _ _ E02 (iffRL _ _ E01 x1))
(fun x2 => iffLR _ _ E01 (iffRL _ _ E02 x2))))).
(* Check that local defs names are preserved if possible during unification *)
Goal forall x (x':=x) (f:forall y, y=y:>nat -> Prop), f _ (eq_refl x').
intros.
unfold x' at 2. (* A way to check that there are indeed 2 occurrences of x' *)
Abort.
(* A simple example we would like not to fail (it used to fail because of
not strict enough evar restriction) *)
Check match Some _ with None => _ | _ => _ end.
(* Used to fail for a couple of days in Nov 2014 *)
Axiom test : forall P1 P2, P1 = P2 -> P1 -> P2.
(* Check use of candidates *)
Import EqNotations.
Definition test2 {A B:Type} {H:A=B} (a:A) : B := rew H in a.
(* Check that pre-existing evars are not counted as newly undefined in "set" *)
(* Reported by Théo *)
Goal exists n : nat, n = n -> True.
eexists.
set (H := _ = _).
Abort.
(* Check interpretation of default evar instance in pretyping *)
(* (reported as bug #7356) *)
Check fun (P : nat -> Prop) (x:nat) (h:P x) => exist _ ?[z] (h : P ?z).
(* A printing check in passing *)
Axiom abs : forall T, T.
Fail Type let x := _ in
ltac:(
let t := type of x in
unify x (abs t);
exact 0).
|