1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
Definition le_trans := 0.
Module Test_Read.
Module M.
Require PeanoNat. (* Reading without importing *)
Check PeanoNat.Nat.le_trans.
Lemma th0 : le_trans = 0.
reflexivity.
Qed.
End M.
Check PeanoNat.Nat.le_trans.
Lemma th0 : le_trans = 0.
reflexivity.
Qed.
Import M.
Lemma th1 : le_trans = 0.
reflexivity.
Qed.
End Test_Read.
(****************************************************************)
(* Arith.Compare containes Require Export Wf_nat. *)
Definition le_decide := 1. (* from Arith/Compare *)
Definition lt_wf := 0. (* from Arith/Wf_nat *)
Module Test_Require.
Module M.
Require Import Compare. (* Imports Compare_dec as well *)
Lemma th1 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th2 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End M.
(* Checks that Compare and Wf_nat are loaded *)
Check Compare.le_decide.
Check Wf_nat.lt_wf.
(* Checks that Compare and Wf_nat are _not_ imported *)
Lemma th1 : le_decide = 1.
reflexivity.
Qed.
Lemma th2 : lt_wf = 0.
reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
Lemma th3 : le_decide = 1.
reflexivity.
Qed.
Lemma th4 : lt_wf = 0.
reflexivity.
Qed.
End Test_Require.
(****************************************************************)
Module Test_Import.
Module M.
Import Compare. (* Imports Wf_nat as well *)
Lemma th1 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th2 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End M.
(* Checks that Compare and Wf_nat are loaded *)
Check Compare.le_decide.
Check Wf_nat.lt_wf.
(* Checks that Compare and Wf_nat are _not_ imported *)
Lemma th1 : le_decide = 1.
reflexivity.
Qed.
Lemma th2 : lt_wf = 0.
reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
Lemma th3 : le_decide = 1.
reflexivity.
Qed.
Lemma th4 : lt_wf = 0.
reflexivity.
Qed.
End Test_Import.
(************************************************************************)
Module Test_Export.
Module M.
Export Compare. (* Exports Wf_nat as well *)
Lemma th1 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th2 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End M.
(* Checks that Compare and Wf_nat are _not_ imported *)
Lemma th1 : le_decide = 1.
reflexivity.
Qed.
Lemma th2 : lt_wf = 0.
reflexivity.
Qed.
(* After Import M they should be imported as well *)
Import M.
Lemma th3 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th4 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End Test_Export.
(************************************************************************)
Module Test_Require_Export.
Definition le_decide := 1. (* from Arith/Compare *)
Definition lt_wf := 0. (* from Arith/Wf_nat *)
Module M.
Require Export Compare. (* Exports Wf_nat as well *)
Lemma th1 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th2 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End M.
(* Checks that Compare and Wf_nat are _not_ imported *)
Lemma th1 : le_decide = 1.
reflexivity.
Qed.
Lemma th2 : lt_wf = 0.
reflexivity.
Qed.
(* After Import M they should be imported as well *)
Import M.
Lemma th3 n : le_decide n = le_decide n.
reflexivity.
Qed.
Lemma th4 n : lt_wf n = lt_wf n.
reflexivity.
Qed.
End Test_Require_Export.
|