1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
|
Definition p := 0.
Definition m := 0.
Module Test_Import.
Module P.
Definition p := 1.
End P.
Module M.
Import P.
Definition m := p.
End M.
Module N.
Import M.
Lemma th0 : p = 0.
reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
Import N.
(* M and P should still be closed *)
Lemma th2 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
End Test_Import.
(********************************************************************)
Module Test_Export.
Module P.
Definition p := 1.
End P.
Module M.
Export P.
Definition m := p.
End M.
Module N.
Export M.
Lemma th0 : p = 1.
reflexivity.
Qed.
End N.
(* M and P should be closed *)
Lemma th1 : m = 0 /\ p = 0.
split; reflexivity.
Qed.
Import N.
(* M and P should now be opened *)
Lemma th2 : m = 1 /\ p = 1.
split; reflexivity.
Qed.
End Test_Export.
|