File: rewrule.v

package info (click to toggle)
coq 8.20.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 44,116 kB
  • sloc: ml: 234,160; sh: 4,301; python: 3,270; ansic: 2,644; makefile: 882; lisp: 172; javascript: 63; xml: 24; sed: 2
file content (290 lines) | stat: -rw-r--r-- 9,340 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
(* -*- mode: coq; coq-prog-args: ("-allow-rewrite-rules") -*- *)

(* Simple first example *)
Symbol pplus : nat -> nat -> nat.
Notation "a ++ b" := (pplus a b).

Rewrite Rules plus_rew :=
| ?n ++ 0 => ?n
| ?n ++ S ?n' => S (?n ++ ?n')
| 0 ++ ?n => ?n
| S ?n ++ ?n' => S (?n ++ ?n').

Check eq_refl : 5 ++ 10 = 15.
Check (fun _ _ => eq_refl) : forall n n', 2 + n ++ 3 + n' = 5 + (n ++ n').

(* Test deep pattern matching *)
Eval lazy  in fun n n' => 2 + n ++ 3 + n'.
Eval cbv   in fun n n' => 2 + n ++ 3 + n'.
Eval cbn   in fun n n' => 2 + n ++ 3 + n'.
Eval simpl in fun n n' => 2 + n ++ 3 + n'. (* Does not reduce *)

(* Example with more pattern constructions and higher-order in patterns *)
#[unfold_fix] Symbol raise : forall P: Type, P.

Rewrite Rules raise_rew :=
  raise (forall (x : ?A), ?P) => fun x => raise ?P

| raise (?A * ?B) => (raise ?A, raise ?B)

| raise unit => tt

| match raise bool as b return ?P with
    true => _ | false => _
  end => raise ?P@{b := raise bool}

| match raise nat as n return ?P with
    0 => ?p | S n => ?p'
  end => raise ?P@{n := raise nat}

| match raise (@eq ?A ?a ?b) as e in _ = b return ?P with
  | eq_refl => _
  end => raise ?P@{b := _; e := raise (?a = ?b)}

| match raise (list ?A) as l return ?P with
  | nil => _ | cons _ _ => _
  end => raise ?P@{l := raise (list ?A)}

| match raise False as e return ?P with
  end => raise ?P@{e := raise False}

| match raise (?A + ?B) as e return ?P with
  | inl _ => _ | inr _ => _
  end => raise ?P@{e := raise (?A + ?B)}.
(* There is currently no way to write these rules without the universe inconcistency *)

Eval simpl in match raise bool with true | false => 0 end. (* Does not reduce *)

Eval lazy in match (raise nat * 5 + 3 :: 0 :: nil)%list with cons 0 l => tt | _ => tt end.

Eval lazy in raise nat + 5.
Eval cbv in raise nat + 5.
Eval cbn in raise nat + 5.
Eval simpl in raise nat + 5. (* Does not reduce *)





Set Primitive Projections.
Record primprod (A B : Type) := { fst: A; snd: B }.

(* Example with even more pattern constructions, mostly for terms *)
Universe idu.
#[unfold_fix, universes(polymorphic)] Symbol id@{q| |} : forall A : Type@{q|idu}, A -> A.

Rewrite Rules id_rew :=
| @{q|u+|+} |- id _ Type@{q|u} => Type@{q|u}

| @{q|u+|+} |- id Type@{q|u} (forall (x : ?A), ?P) => forall x, id Type@{q|u} ?P
| id (forall (x : ?A), ?P) ?f => fun (x : ?A) => id ?P (?f x)

| @{u+} |- id Type@{u} (?A * ?B)%type => (id Type@{u} ?A * id Type@{u} ?B)%type
| id (?A * ?B) (?a, ?b) => (id _ ?a, id _ ?b)

| id _ unit => unit
| id _ tt => tt

| id _ nat => nat
| id _ 0 => 0
| id _ (S ?n) => S (id _ ?n)
| id _ (fun (n : ?A) => S ?n) => fun n => S (id _ ?n)
| id (primprod ?A ?B) {| fst := ?a; snd := ?b |} => {| fst := id _ ?a; snd := id _ ?b |}.

Fail Rewrite Rule id_rew_fail := Datatypes.id _ ?x => ?x. (* Subterm not recognised as pattern: Datatypes.id *)
Fail Rewrite Rule id_rew_fail := 0 => 0. (* Head head-pattern is not a symbol. *)
Fail Rewrite Rule id_rew_fail := id _ (?x ?y) => ?x ?y. (* Subterm not recognised as pattern: ?x *)
Fail Rewrite Rule id_rew_fail := id _ _ => ?x. (* Unknown existential variable. *)
Fail Rewrite Rule id_rew_fail := @{u} |- id _ ?x => ?x. (* Not all universe level variables appear in the pattern. *)
Fail Rewrite Rule id_rew_fail := id _ (?x, ?x) => ?x. (* Variable ?x is bound multiple times in the pattern (holes number 1 and 2). *)
Fail Rewrite Rule id_rew_fail := @{u+} |- id _ (Type@{u}, Type@{u}) => ?x. (* Universe variable u is bound multiple times in the pattern (holes number 0 and 1). *)
Fail Rewrite Rule id_rew_fail := id _ (?x, ?y) => (?x, ?y). (* The replacement term contains unresolved implicit arguments: (?x, ?y) *)
Fail Rewrite Rule id_rew_fail := id _ Type => Type. (* Universe rewrule.xxx is unbound. *)
Fail Rewrite Rule id_rew_fail := id _ (forall x, ?P) => ?P. (* Cannot interpret ?P in current context: no binding for x. *)


Symbol idS : forall (A : SProp), A -> A.
Inductive unitS : SProp := ttS.
Rewrite Rule id_rew' := idS _ ttS => ttS.
(* Warning: This subpattern is irrelevant and can never be matched against. *)

Symbol vararity : forall n, (fix f n := match n with 0 => unit | S n => unit -> f n end) n.
Check vararity (4 + _) tt tt tt _.
Rewrite Rule vararity_rew := id _ (vararity _) => 0.
(* Warning: This subpattern has a yet unknown type, which may be a product type, but pattern-matching is not done modulo eta, so this rule may not trigger at required times *)

Module MLTTmap.

Symbol map : forall A B, (A -> B) -> list A -> list B.

Rewrite Rule map_rew :=
| map _ _ (fun x => x) ?l => ?l
| map _ ?C ?f (map ?A _ ?g ?l) => map ?A ?C (fun x => ?f (?g x)) ?l
| map ?A ?B ?f (@nil _) => @nil ?B
| map ?A ?B ?f (@cons _ ?a ?l) => @cons ?B (?f ?a) (map _ _ ?f ?l).

Definition idA {A: Type} := fun (x : A) => x.

Eval lazy  in fun l => (map _ _ idA l).
Eval cbv   in fun l => (map _ _ idA l).
Eval cbn   in fun l => (map _ _ idA l).
Eval simpl in fun l => (map _ _ idA l). (* Does not reduce *)

Eval lazy in fun l => (map _ _ (fun f x => f x) l).
(* Does not reduce because there is no support for eta *)

End MLTTmap.

(* Example where ignore holes are necessary *)
Symbol J : forall (A : Type) (a : A) (P : A -> Type), P a -> forall (a' : A), @eq A a a' -> P a'.
Rewrite Rule a := J _ _ _ ?H _ (@eq_refl _ _) => ?H.


Module omega.
(* Example of a broken extension *)
#[unfold_fix] Symbol omega : nat.
Rewrite Rule omega_rew := match omega with S n => ?P | 0 => _ end => ?P@{n := omega}.
Theorem omega_spec : S omega = omega.
Proof.
  symmetry.
  change omega with (Nat.pred omega) at 2.
  remember omega as omeg eqn:e.
  destruct omeg. 2: reflexivity.
  apply (f_equal (fun n => match n with 0 => 0 | S _ => 1 end)) in e.
  apply e.
Qed.

Theorem omega_contradiction : False.
Proof.
  assert (forall n, S n = n -> False) as X.
  2: eapply X, omega_spec.
  induction n.
  1: discriminate.
  now intros [=].
Qed.

Fail Timeout 1 Eval lazy in omega + 0.
End omega.


Module stream.

(* Subtle interaction between rewriting and the guard-checker *)
Inductive stream := T (_ : stream).

Fixpoint f s : False := f match s with T s' => s' end.
Fixpoint g s : False := match s with T s' => g s' end.

Rewrite Rule raise_rew_stream :=
| match raise _ as s return ?P with T _ => _ end => raise ?P@{s := raise _}.

Goal forall s, f s = g s.
  unfold f, g.
  induction s. assumption.
Defined.

Eval lazy in g (raise _).
Fail Timeout 1 Eval lazy in f (raise _).

End stream.

Module context.
(* Test whether context extensions work correctly (here, with constructor arrguments)*)
Symbol id : forall A, A -> A.
Axioms (aa ee : nat).
Inductive A := C (a := aa) (b : unit) (c := (a, b)) (d : True) (e := ee).

Rewrite Rule raise_rew_C := match raise _ with C a b c d e => id (_ * _) ?P end => ?P@{a := _; b := raise _; c := _; d := raise _; e := _}.

Eval lazy  in match raise _ with C a b c d e => id _ (a, b, c, d, e) end.
Eval cbv   in match raise _ with C a b c d e => id _ (a, b, c, d, e) end.
Eval cbn   in match raise _ with C a b c d e => id _ (a, b, c, d, e) end.
Eval simpl in match raise _ with C a b c d e => id _ (a, b, c, d, e) end.
End context.

(* Non-confluent rules prove False *)
Symbol Devil : bool -> bool.

Rewrite Rule devil :=
| Devil ?b => false
| Devil true => true.

Lemma Devil_false b : Devil b = false.
Proof. reflexivity. Defined.

Lemma Devil_true : Devil true = true.
Proof. reflexivity. Defined.

Lemma ministry_of_truth : true = false.
Proof.
  transitivity (Devil true).
  - symmetry;exact Devil_true.
  - apply Devil_false.
Defined.

Corollary contradiction : False.
Proof.
  pose proof ministry_of_truth; discriminate.
Defined.

Definition successor_of_nothing : nat :=
  match ministry_of_truth in eq _ b return if b then bool else nat with
    eq_refl => false
  end.

(* Such mistyped terms would break the VM, hence why it must be disabled *)
Eval vm_compute in pred successor_of_nothing.

Definition ignore {A} (x:A) := tt.

Definition beginning_of_the_world : ignore (pred successor_of_nothing) = tt.
Proof. lazy;reflexivity. Qed.

Lemma end_of_the_world : tt = tt.
Proof.
  vm_compute.
  exact beginning_of_the_world.
Defined.
(* This computation would run in the VM from the kernel, which is dangerous *)


(* Having a common supertype is not enough to preserve SR *)
Universe u.
Symbol idTy@{i} : Type@{i} -> Type@{u}.

Rewrite Rule idTy_id := idTy ?t => ?t.
(* Warning: This rewrite rule breaks subject reduction (universe inconsistency). *)

Definition U : Type@{u} := idTy Type@{u}.
Check U : U.

Definition id'@{i} : Type@{i} -> Type@{u} := fun (t: Type@{i}) => t.
Fail Definition U' : Type@{u} := id' Type@{u}.

Require Import Coq.Logic.Hurkens.
Goal False.
  apply (TypeNeqSmallType.paradox U eq_refl).
Defined.


(* Test substitution on context extensions *)
Definition a : 0 = 0.
  set (test := let n := 0 in @eq_trans _ n n n (raise _) (raise _)).
  lazy delta in test.
  lazy beta in test.
  set (test_lazy := test).
  lazy delta zeta in test_lazy.
  set (test_cbv := test).
  cbv delta zeta in test_cbv.
  set (test_cbn := test).
  cbn delta zeta in test_cbn.
  set (test_simpl := test).
  unfold test in test_simpl. simpl in test_simpl.
Abort.

Definition test_subst_context :=
  Eval cbv delta zeta in
  let n := 0 in
  match raise (n = n) in (_ = a) return (n = a) with
  | eq_refl => raise _
  end.