1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
|
Section Foo.
Variable X : Type.
Polymorphic Section Bar.
Variable A : Type.
Definition id (a:A) := a.
End Bar.
Check id@{_}.
End Foo.
Check id@{_}.
Polymorphic Section Foo.
Variable A : Type.
Section Bar.
Variable B : Type.
Inductive prod := Prod : A -> B -> prod.
End Bar.
Check prod@{_}.
End Foo.
Check prod@{_ _}.
Section Foo.
Universe K.
Inductive bla := Bla : Type@{K} -> bla.
Polymorphic Definition bli@{j} := Type@{j} -> bla.
Definition bloo := bli@{_}.
Polymorphic Universe i.
Fail Definition x := Type.
Fail Inductive x : Type := .
Polymorphic Definition x := Type.
Polymorphic Inductive y : x := .
Variable A : Type. (* adds a mono univ for the Type, which is unrelated to the others *)
Fail Variable B : (y : Type@{i}).
(* not allowed: mono constraint (about a fresh univ for y) regarding
poly univ i *)
Polymorphic Variable B : Type. (* new polymorphic stuff always OK *)
Variable C : Type@{i}. (* no new univs so no problems *)
Polymorphic Definition thing := bloo -> y -> A -> B.
End Foo.
Check bli@{_}.
Check bloo@{}.
Check thing@{_ _ _}.
Section Foo.
Polymorphic Universes i k.
Universe j.
Fail Constraint i < j.
Fail Constraint i < k.
(* referring to mono univs in poly constraints is OK. *)
Polymorphic Constraint i < j. Polymorphic Constraint j < k.
Polymorphic Definition foo := Type@{j}.
End Foo.
|