1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
Require Import TestSuite.admit.
Require Import Setoid.
Parameter A : Set.
Axiom eq_dec : forall a b : A, {a = b} + {a <> b}.
Inductive set : Set :=
| Empty : set
| Add : A -> set -> set.
Fixpoint In (a : A) (s : set) {struct s} : Prop :=
match s with
| Empty => False
| Add b s' => a = b \/ In a s'
end.
Definition same (s t : set) : Prop := forall a : A, In a s <-> In a t.
Lemma setoid_set : Setoid_Theory set same.
unfold same; split ; red.
red; auto.
red.
intros.
elim (H a); auto.
intros.
elim (H a); elim (H0 a).
split; auto.
Qed.
Add Setoid set same setoid_set as setsetoid.
Add Morphism In with signature (eq ==> same ==> iff) as In_ext.
Proof.
unfold same; intros a s t H; elim (H a); auto.
Qed.
Lemma add_aux :
forall s t : set,
same s t -> forall a b : A, In a (Add b s) -> In a (Add b t).
unfold same; simple induction 2; intros.
rewrite H1.
simpl; left; reflexivity.
elim (H a).
intros.
simpl; right.
apply (H2 H1).
Qed.
Add Morphism Add with signature (eq ==> same ==> same) as Add_ext.
split; apply add_aux.
assumption.
rewrite H.
reflexivity.
Qed.
Fixpoint remove (a : A) (s : set) {struct s} : set :=
match s with
| Empty => Empty
| Add b t =>
match eq_dec a b with
| left _ => remove a t
| right _ => Add b (remove a t)
end
end.
Lemma in_rem_not : forall (a : A) (s : set), ~ In a (remove a (Add a Empty)).
intros.
setoid_replace (remove a (Add a Empty)) with Empty.
auto.
unfold same.
split.
simpl.
case (eq_dec a a).
intros e ff; elim ff.
intros; absurd (a = a); trivial.
simpl.
intro H; elim H.
Qed.
Parameter P : set -> Prop.
Parameter P_ext : forall s t : set, same s t -> P s -> P t.
Add Morphism P with signature (same ==> iff) as P_extt.
intros; split; apply P_ext; (assumption || apply (Seq_sym _ _ setoid_set); assumption).
Qed.
Lemma test_rewrite :
forall (a : A) (s t : set), same s t -> P (Add a s) -> P (Add a t).
intros.
rewrite <- H.
rewrite H.
setoid_rewrite <- H.
setoid_rewrite H.
setoid_rewrite <- H.
trivial.
Qed.
(* Unifying the domain up to delta-conversion (example from emakarov) *)
Definition id: Set -> Set := fun A => A.
Definition rel : forall A : Set, relation (id A) := @eq.
Definition f: forall A : Set, A -> A := fun A x => x.
Add Relation (id A) (rel A) as eq_rel.
Add Morphism (@f A) with signature (eq ==> eq) as f_morph.
Proof.
unfold rel, f. trivial.
Qed.
(* Submitted by Nicolas Tabareau *)
(* Needs unification.ml to support environments with de Bruijn *)
Goal forall
(f : Prop -> Prop)
(Q : (nat -> Prop) -> Prop)
(H : forall (h : nat -> Prop), Q (fun x : nat => f (h x)) <-> True)
(h:nat -> Prop),
Q (fun x : nat => f (Q (fun b : nat => f (h x)))) <-> True.
intros f0 Q H.
setoid_rewrite H.
tauto.
Qed.
(** Check proper refreshing of the lemma application for multiple
different instances in a single setoid rewrite. *)
Section mult.
Context (fold : forall {A} {B}, (A -> B) -> A -> B).
Context (add : forall A, A -> A).
Context (fold_lemma : forall {A B f} {eqA : relation B} x, eqA (fold A B f (add A x)) (fold _ _ f x)).
Context (ab : forall B, A -> B).
Context (anat : forall A, nat -> A).
Goal forall x, (fold _ _ (fun x => ab A x) (add A x) = anat _ (fold _ _ (ab nat) (add _ x))).
Proof. intros.
setoid_rewrite fold_lemma.
change (fold A A (fun x0 : A => ab A x0) x = anat A (fold A nat (ab nat) x)).
Abort.
End mult.
(** Current semantics for rewriting with typeclass constraints in the lemma
does not fix the instance at the first unification, use [at], or simply rewrite for
this semantics. *)
Parameter beq_nat : forall x y : nat, bool.
Class Foo (A : Type) := {foo_neg : A -> A ; foo_prf : forall x : A, x = foo_neg x}.
#[export] Instance: Foo nat. admit. Defined.
#[export] Instance: Foo bool. admit. Defined.
Goal forall (x : nat) (y : bool), beq_nat (foo_neg x) 0 = foo_neg y.
Proof. intros. setoid_rewrite <- foo_prf. change (beq_nat x 0 = y). Abort.
Goal forall (x : nat) (y : bool), beq_nat (foo_neg x) 0 = foo_neg y.
Proof. intros. setoid_rewrite <- @foo_prf at 1. change (beq_nat x 0 = foo_neg y). Abort.
(* This should not raise an anomaly as it did for some time in early 2016 *)
Definition t := nat -> bool.
Definition h (a b : t) := forall n, a n = b n.
#[export] Instance subrelh : subrelation h (Morphisms.pointwise_relation nat eq).
Proof. intros x y H; assumption. Qed.
Goal forall a b, h a b -> a 0 = b 0.
intros.
setoid_rewrite H. (* Fallback on ordinary rewrite without anomaly *)
reflexivity.
Qed.
Module InType.
Require Import CRelationClasses CMorphisms.
Inductive All {A : Type} (P : A -> Type) : list A -> Type :=
| All_nil : All P nil
| All_cons x (px : P x) xs (pxs : All P xs) : All P (x :: xs).
Lemma All_impl {A} (P Q : A -> Type) l : (forall x, P x -> Q x) -> All P l -> All Q l.
Proof.
intros HP. induction 1; constructor; eauto.
Qed.
Axiom add_0_r_peq : forall x : nat, eq (x + 0)%nat x.
#[export] Instance All_proper {A} :
CMorphisms.Proper ((pointwise_relation A iffT) ==> eq ==> iffT) All.
Proof.
intros f g Hfg x y e. destruct e. split; apply All_impl, Hfg.
Qed.
Lemma rewrite_all {l : list nat} (Q : nat -> Type) :
All (fun x => Q x) l ->
All (fun x => Q (x + 0)) l.
Proof.
intros a.
setoid_rewrite add_0_r_peq.
exact a.
Qed.
Lemma rewrite_all_in {l : list nat} (Q : nat -> Type) :
All (fun x => Q (x + 0)) l ->
All (fun x => Q x) l.
Proof.
intros a.
setoid_rewrite add_0_r_peq in a.
exact a.
Qed.
Lemma rewrite_all_in2 {l : list nat} (Q : nat -> Type) (R : nat -> Type) :
All (fun x => prod (Q (x + 0)%nat) (R x))%type l ->
All (fun x => prod (Q x) (R x))%type l.
Proof.
intros a.
setoid_rewrite add_0_r_peq in a.
exact a.
Qed.
End InType.
Module Polymorphism.
Require Import CRelationClasses CMorphisms.
#[universes(polymorphic, cumulative)]
Inductive plist@{i} (A : Type@{i}) : Type@{i} :=
| pnil : plist A
| pcons : A -> plist A -> plist A.
Arguments pnil {A}.
Arguments pcons {A}.
#[universes(polymorphic, cumulative)]
Record pprod@{i j} (A : Type@{i}) (B : Type@{j}) : Type@{max(i, j)} :=
{ pfst : A;
psnd : B }.
Arguments pfst {A B}.
Arguments psnd {A B}.
Notation "x :: xs" := (pcons x xs).
#[universes(polymorphic)]
Fixpoint All@{i j} {A : Type@{i}} (P : A -> Type@{j}) (l : plist A) : Type@{j} :=
match l with
| pnil => unit
| x :: xs => pprod (P x) (All P xs)
end.
(*
#[universes(polymorphic, cumulative)]
Inductive All {A : Type} (P : A -> Type) : list A -> Type :=
| All_nil : All P nil
| All_cons x (px : P x) xs (pxs : All P xs) : All P (x :: xs). *)
#[universes(polymorphic)]
Lemma All_impl {A} (P Q : A -> Type) l : (forall x, P x -> Q x) -> All P l -> All Q l.
Proof.
intros HP.
induction l; [intros|intros []]; constructor; eauto.
Qed.
Check pointwise_relation.
#[universes(polymorphic)]
Inductive peq@{i} (A : Type@{i}) (a : A) : A -> Type@{i} :=
peq_refl : peq A a a.
Arguments peq {A}.
Arguments peq_refl {A a}.
#[universes(polymorphic)]
Axiom add_0_r_peq : forall x : nat, peq (x + 0)%nat x.
#[universes(polymorphic), export]
Instance peq_left {A : Type} {B : Type} {R : crelation B} (f : A -> B) `{Reflexive B R} : Proper (peq ==> R) f.
Admitted.
#[export] Instance reflexive_eq_dom_reflexive@{i j jr mij mijr} {A : Type@{i}} {B : Type@{j}} (R : crelation@{j jr} B) :
Reflexive@{j jr} R ->
Reflexive@{mij mijr} (@peq A ==> R)%signatureT.
Proof.
intros hr x ? ? e. destruct e. apply hr.
Qed.
#[universes(polymorphic), export]
Instance All_proper {A} :
CMorphisms.Proper ((pointwise_relation A iffT) ==> peq ==> iffT) All.
Proof.
intros f g Hfg x y e. destruct e. split; apply All_impl, Hfg.
Qed.
#[universes(polymorphic), export]
Instance eq_proper_proxy@{i} {A : Type@{i}} (x : A) : ProperProxy@{i i} peq x.
Proof. red. exact peq_refl. Defined.
#[universes(polymorphic), export]
Instance peq_equiv {A} : Equivalence (@peq A).
Proof.
split.
Admitted.
Lemma rewrite_all {l : plist nat} (Q : nat -> Type) :
All (fun x => Q x) l ->
All (fun x => Q (x + 0)) l.
Proof.
intros a.
setoid_rewrite add_0_r_peq.
exact a.
Qed.
Lemma rewrite_all_in {l : plist nat} (Q : nat -> Type) :
All (fun x => Q (x + 0)) l ->
All (fun x => Q x) l.
Proof.
intros a. Show Universes.
setoid_rewrite add_0_r_peq in a.
exact a.
Qed.
Lemma rewrite_all_in2 {l : plist nat} (Q : nat -> Type) (R : nat -> Type) :
All (fun x => pprod (Q (x + 0)%nat) (R x))%type l ->
All (fun x => pprod (Q x) (R x))%type l.
Proof.
intros a.
setoid_rewrite add_0_r_peq in a.
exact a.
Qed.
End Polymorphism.
|