1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Typeclass-based relations, tactics and standard instances
This is the basic theory needed to formalize morphisms and setoids.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Require Export Coq.Classes.Init.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.
Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
(** We allow to unfold the [relation] definition while doing morphism search. *)
Section Defs.
Context {A : Type}.
(** We rebind relational properties in separate classes to be able to overload each proof. *)
Class Reflexive (R : relation A) :=
reflexivity : forall x : A, R x x.
Definition complement (R : relation A) : relation A := fun x y => R x y -> False.
(** Opaque for proof-search. *)
Typeclasses Opaque complement.
(** These are convertible. *)
Lemma complement_inverse R : complement (flip R) = flip (complement R).
Proof. reflexivity. Qed.
Class Irreflexive (R : relation A) :=
irreflexivity : Reflexive (complement R).
Class Symmetric (R : relation A) :=
symmetry : forall {x y}, R x y -> R y x.
Class Asymmetric (R : relation A) :=
asymmetry : forall {x y}, R x y -> R y x -> False.
Class Transitive (R : relation A) :=
transitivity : forall {x y z}, R x y -> R y z -> R x z.
(** Various combinations of reflexivity, symmetry and transitivity. *)
(** A [PreOrder] is both Reflexive and Transitive. *)
Class PreOrder (R : relation A) : Prop := {
#[global] PreOrder_Reflexive :: Reflexive R | 2 ;
#[global] PreOrder_Transitive :: Transitive R | 2 }.
(** A [StrictOrder] is both Irreflexive and Transitive. *)
Class StrictOrder (R : relation A) : Prop := {
#[global] StrictOrder_Irreflexive :: Irreflexive R ;
#[global] StrictOrder_Transitive :: Transitive R }.
(** By definition, a strict order is also asymmetric *)
Global Instance StrictOrder_Asymmetric `(StrictOrder R) : Asymmetric R.
Proof. firstorder. Qed.
(** A partial equivalence relation is Symmetric and Transitive. *)
Class PER (R : relation A) : Prop := {
#[global] PER_Symmetric :: Symmetric R | 3 ;
#[global] PER_Transitive :: Transitive R | 3 }.
(** Equivalence relations. *)
Class Equivalence (R : relation A) : Prop := {
#[global] Equivalence_Reflexive :: Reflexive R ;
#[global] Equivalence_Symmetric :: Symmetric R ;
#[global] Equivalence_Transitive :: Transitive R }.
(** An Equivalence is a PER plus reflexivity. *)
Global Instance Equivalence_PER {R} `(E:Equivalence R) : PER R | 10 :=
{ }.
(** An Equivalence is a PreOrder plus symmetry. *)
Global Instance Equivalence_PreOrder {R} `(E:Equivalence R) : PreOrder R | 10 :=
{ }.
(** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *)
Class Antisymmetric eqA `{equ : Equivalence eqA} (R : relation A) :=
antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.
Class subrelation (R R' : relation A) : Prop :=
is_subrelation : forall {x y}, R x y -> R' x y.
(** Any symmetric relation is equal to its inverse. *)
Lemma subrelation_symmetric R `(Symmetric R) : subrelation (flip R) R.
Proof. hnf. intros x y H0. red in H0. apply symmetry. assumption. Qed.
Section flip.
Lemma flip_Reflexive `{Reflexive R} : Reflexive (flip R).
Proof. tauto. Qed.
Program Definition flip_Irreflexive `(Irreflexive R) : Irreflexive (flip R) :=
irreflexivity (R:=R).
Program Definition flip_Symmetric `(Symmetric R) : Symmetric (flip R) :=
fun x y H => symmetry (R:=R) H.
Program Definition flip_Asymmetric `(Asymmetric R) : Asymmetric (flip R) :=
fun x y H H' => asymmetry (R:=R) H H'.
Program Definition flip_Transitive `(Transitive R) : Transitive (flip R) :=
fun x y z H H' => transitivity (R:=R) H' H.
Program Definition flip_Antisymmetric `(Antisymmetric eqA R) :
Antisymmetric eqA (flip R).
Proof. firstorder. Qed.
(** Inversing the larger structures *)
Lemma flip_PreOrder `(PreOrder R) : PreOrder (flip R).
Proof. firstorder. Qed.
Lemma flip_StrictOrder `(StrictOrder R) : StrictOrder (flip R).
Proof. firstorder. Qed.
Lemma flip_PER `(PER R) : PER (flip R).
Proof. firstorder. Qed.
Lemma flip_Equivalence `(Equivalence R) : Equivalence (flip R).
Proof. firstorder. Qed.
End flip.
Section complement.
Definition complement_Irreflexive `(Reflexive R)
: Irreflexive (complement R).
Proof. firstorder. Qed.
Definition complement_Symmetric `(Symmetric R) : Symmetric (complement R).
Proof. firstorder. Qed.
End complement.
(** Rewrite relation on a given support: declares a relation as a rewrite
relation for use by the generalized rewriting tactic.
It helps choosing if a rewrite should be handled
by the generalized or the regular rewriting tactic using leibniz equality.
Users can declare an [RewriteRelation A RA] anywhere to declare default
relations on a given type `A`. This is also done automatically by
the [Declare Relation A RA] commands. It has no mode declaration:
it will assign `?A := Prop, ?R := iff` on an entirely unspecified query
`RewriteRelation ?A ?R`, or any prefered rewrite relation of priority < 2. *)
Class RewriteRelation (RA : relation A).
(** Leibniz equality. *)
Section Leibniz.
Global Instance eq_Reflexive : Reflexive (@eq A) := @eq_refl A.
Global Instance eq_Symmetric : Symmetric (@eq A) := @eq_sym A.
Global Instance eq_Transitive : Transitive (@eq A) := @eq_trans A.
(** Leibinz equality [eq] is an equivalence relation.
The instance has low priority as it is always applicable
if only the type is constrained. *)
Global Program Instance eq_equivalence : Equivalence (@eq A) | 10.
End Leibniz.
(** Leibniz disequality. *)
Section LeibnizNot.
(** Disequality is symmetric. *)
Global Instance neq_Symmetric : Symmetric (fun x y : A => x <> y) := (@not_eq_sym A).
End LeibnizNot.
End Defs.
(** Default rewrite relations handled by [setoid_rewrite] on Prop. *)
#[global]
Instance inverse_impl_rewrite_relation : RewriteRelation (flip impl) | 3 := {}.
#[global]
Instance impl_rewrite_relation : RewriteRelation impl | 3 := {}.
#[global]
Instance iff_rewrite_relation : RewriteRelation iff | 2 := {}.
(** Any [Equivalence] declared in the context is automatically considered
a rewrite relation. This only applies if the relation is at least partially
defined: setoid_rewrite won't try to infer arbitrary user rewrite relations. *)
Definition equivalence_rewrite_relation `(eqa : Equivalence A eqA) : RewriteRelation eqA :=
Build_RewriteRelation _.
Ltac equiv_rewrite_relation R :=
tryif is_evar R then fail
else class_apply equivalence_rewrite_relation.
#[global]
Hint Extern 10 (@RewriteRelation ?A ?R) => equiv_rewrite_relation R : typeclass_instances.
(** Hints to drive the typeclass resolution avoiding loops
due to the use of full unification. *)
#[global]
Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
#[global]
Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
#[global]
Hint Extern 3 (Irreflexive (complement _)) => class_apply complement_Irreflexive : typeclass_instances.
#[global]
Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
#[global]
Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
#[global]
Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
#[global]
Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
#[global]
Hint Extern 3 (Antisymmetric (flip _)) => class_apply flip_Antisymmetric : typeclass_instances.
#[global]
Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
#[global]
Hint Extern 3 (StrictOrder (flip _)) => class_apply flip_StrictOrder : typeclass_instances.
#[global]
Hint Extern 3 (PreOrder (flip _)) => class_apply flip_PreOrder : typeclass_instances.
#[global]
Hint Extern 4 (subrelation (flip _) _) =>
class_apply @subrelation_symmetric : typeclass_instances.
Arguments irreflexivity {A R Irreflexive} [x] _ : rename.
Arguments symmetry {A} {R} {_} [x] [y] _.
Arguments asymmetry {A} {R} {_} [x] [y] _ _.
Arguments transitivity {A} {R} {_} [x] [y] [z] _ _.
Arguments Antisymmetric A eqA {_} _.
#[global]
Hint Resolve irreflexivity : ord.
Unset Implicit Arguments.
Ltac solve_relation :=
match goal with
| [ |- ?R ?x ?x ] => reflexivity
| [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
end.
#[global]
Hint Extern 4 => solve_relation : relations.
(** We can already dualize all these properties. *)
(** * Standard instances. *)
Ltac reduce_hyp H :=
match type of H with
| context [ _ <-> _ ] => fail 1
| _ => red in H ; try reduce_hyp H
end.
Ltac reduce_goal :=
match goal with
| [ |- _ <-> _ ] => fail 1
| _ => red ; intros ; try reduce_goal
end.
Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.
Ltac reduce := reduce_goal.
Tactic Notation "apply" "*" constr(t) :=
first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].
Ltac simpl_relation :=
unfold flip, impl, arrow ; try reduce ; program_simpl ;
try ( solve [ dintuition auto with relations ]).
Local Obligation Tactic := try solve [ simpl_relation ].
(** Logical implication. *)
#[global]
Program Instance impl_Reflexive : Reflexive impl.
#[global]
Program Instance impl_Transitive : Transitive impl.
(** Logical equivalence. *)
#[global]
Instance iff_Reflexive : Reflexive iff := iff_refl.
#[global]
Instance iff_Symmetric : Symmetric iff := iff_sym.
#[global]
Instance iff_Transitive : Transitive iff := iff_trans.
(** Logical equivalence [iff] is an equivalence relation. *)
#[global]
Program Instance iff_equivalence : Equivalence iff.
(** We now develop a generalization of results on relations for arbitrary predicates.
The resulting theory can be applied to homogeneous binary relations but also to
arbitrary n-ary predicates. *)
Local Open Scope list_scope.
(** A compact representation of non-dependent arities, with the codomain singled-out. *)
(* Note, we do not use [list Type] because it imposes unnecessary universe constraints *)
Inductive Tlist : Type := Tnil : Tlist | Tcons : Type -> Tlist -> Tlist.
Local Infix "::" := Tcons.
Fixpoint arrows (l : Tlist) (r : Type) : Type :=
match l with
| Tnil => r
| A :: l' => A -> arrows l' r
end.
(** We can define abbreviations for operation and relation types based on [arrows]. *)
Definition unary_operation A := arrows (A::Tnil) A.
Definition binary_operation A := arrows (A::A::Tnil) A.
Definition ternary_operation A := arrows (A::A::A::Tnil) A.
(** We define n-ary [predicate]s as functions into [Prop]. *)
Notation predicate l := (arrows l Prop).
(** Unary predicates, or sets. *)
Definition unary_predicate A := predicate (A::Tnil).
(** Homogeneous binary relations, equivalent to [relation A]. *)
Definition binary_relation A := predicate (A::A::Tnil).
(** We can close a predicate by universal or existential quantification. *)
Fixpoint predicate_all (l : Tlist) : predicate l -> Prop :=
match l with
| Tnil => fun f => f
| A :: tl => fun f => forall x : A, predicate_all tl (f x)
end.
Fixpoint predicate_exists (l : Tlist) : predicate l -> Prop :=
match l with
| Tnil => fun f => f
| A :: tl => fun f => exists x : A, predicate_exists tl (f x)
end.
(** Pointwise extension of a binary operation on [T] to a binary operation
on functions whose codomain is [T].
For an operator on [Prop] this lifts the operator to a binary operation. *)
Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
(l : Tlist) : binary_operation (arrows l T) :=
match l with
| Tnil => fun R R' => op R R'
| A :: tl => fun R R' =>
fun x => pointwise_extension op tl (R x) (R' x)
end.
(** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *)
Fixpoint pointwise_lifting (op : binary_relation Prop) (l : Tlist) : binary_relation (predicate l) :=
match l with
| Tnil => fun R R' => op R R'
| A :: tl => fun R R' =>
forall x, pointwise_lifting op tl (R x) (R' x)
end.
(** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *)
Definition predicate_equivalence {l : Tlist} : binary_relation (predicate l) :=
pointwise_lifting iff l.
(** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *)
Definition predicate_implication {l : Tlist} :=
pointwise_lifting impl l.
(** Notations for pointwise equivalence and implication of predicates. *)
Declare Scope predicate_scope.
Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope.
Local Open Scope predicate_scope.
(** The pointwise liftings of conjunction and disjunctions.
Note that these are [binary_operation]s, building new relations out of old ones. *)
Definition predicate_intersection := pointwise_extension and.
Definition predicate_union := pointwise_extension or.
Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
(** The always [True] and always [False] predicates. *)
Fixpoint true_predicate {l : Tlist} : predicate l :=
match l with
| Tnil => True
| A :: tl => fun _ => @true_predicate tl
end.
Fixpoint false_predicate {l : Tlist} : predicate l :=
match l with
| Tnil => False
| A :: tl => fun _ => @false_predicate tl
end.
Notation "∙⊤∙" := true_predicate : predicate_scope.
Notation "∙⊥∙" := false_predicate : predicate_scope.
(** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *)
#[global]
Program Instance predicate_equivalence_equivalence {l} :
Equivalence (@predicate_equivalence l).
Next Obligation.
intro l; induction l ; firstorder.
Qed.
Next Obligation.
intro l; induction l ; firstorder.
Qed.
Next Obligation.
intro l.
fold pointwise_lifting.
induction l as [|T l IHl].
- firstorder.
- intros x y z H H0 x0. pose (IHl (x x0) (y x0) (z x0)).
firstorder.
Qed.
#[global]
Program Instance predicate_implication_preorder {l} :
PreOrder (@predicate_implication l).
Next Obligation.
intro l; induction l ; firstorder.
Qed.
Next Obligation.
intro l.
induction l as [|T l IHl].
- firstorder.
- intros x y z H H0 x0. pose (IHl (x x0) (y x0) (z x0)). firstorder.
Qed.
(** We define the various operations which define the algebra on binary relations,
from the general ones. *)
Section Binary.
Context {A : Type}.
Definition relation_equivalence : relation (relation A) :=
@predicate_equivalence (_::_::Tnil).
Global Instance relation_equivalence_rewrite_relation: RewriteRelation relation_equivalence := {}.
Definition relation_conjunction (R : relation A) (R' : relation A) : relation A :=
@predicate_intersection (A::A::Tnil) R R'.
Definition relation_disjunction (R : relation A) (R' : relation A) : relation A :=
@predicate_union (A::A::Tnil) R R'.
(** Relation equivalence is an equivalence, and subrelation defines a partial order. *)
Global Instance relation_equivalence_equivalence :
Equivalence relation_equivalence.
Proof. exact (@predicate_equivalence_equivalence (A::A::Tnil)). Qed.
Global Instance relation_implication_preorder : PreOrder (@subrelation A).
Proof. exact (@predicate_implication_preorder (A::A::Tnil)). Qed.
(** *** Partial Order.
A partial order is a preorder which is additionally antisymmetric.
We give an equivalent definition, up-to an equivalence relation
on the carrier. *)
Class PartialOrder eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (flip R)).
(** The equivalence proof is sufficient for proving that [R] must be a
morphism for equivalence (see Morphisms). It is also sufficient to
show that [R] is antisymmetric w.r.t. [eqA] *)
Global Instance partial_order_antisym `(PartialOrder eqA R) : Antisymmetric A eqA R.
Proof with auto.
reduce_goal.
pose proof partial_order_equivalence as poe. do 3 red in poe.
apply <- poe. firstorder.
Qed.
Lemma PartialOrder_inverse `(PartialOrder eqA R) : PartialOrder eqA (flip R).
Proof. firstorder. Qed.
End Binary.
#[global]
Hint Extern 3 (PartialOrder (flip _)) => class_apply PartialOrder_inverse : typeclass_instances.
(** The partial order defined by subrelation and relation equivalence. *)
#[global]
Program Instance subrelation_partial_order {A} :
PartialOrder (@relation_equivalence A) subrelation.
Next Obligation.
Proof.
unfold relation_equivalence in *. compute; firstorder.
Qed.
Global Typeclasses Opaque arrows predicate_implication predicate_equivalence
relation_equivalence pointwise_lifting.
(* Register bindings for the generalized rewriting tactic *)
Register relation as rewrite.prop.relation.
Register subrelation as rewrite.prop.subrelation.
Register Reflexive as rewrite.prop.Reflexive.
Register reflexivity as rewrite.prop.reflexivity.
Register Symmetric as rewrite.prop.Symmetric.
Register symmetry as rewrite.prop.symmetry.
Register Transitive as rewrite.prop.Transitive.
Register transitivity as rewrite.prop.transitivity.
|