1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** * Decidable setoid equality theory.
Author: Matthieu Sozeau
Institution: LRI, CNRS UMR 8623 - University Paris Sud
*)
Set Implicit Arguments.
Unset Strict Implicit.
Generalizable Variables A B .
(** Export notations. *)
Require Export Coq.Classes.SetoidClass.
(** The [DecidableSetoid] class asserts decidability of a [Setoid].
It can be useful in proofs to reason more classically. *)
Require Import Coq.Logic.Decidable.
Class DecidableSetoid `(S : Setoid A) :=
setoid_decidable : forall x y : A, decidable (x == y).
(** The [EqDec] class gives a decision procedure for a particular setoid
equality. *)
Class EqDec `(S : Setoid A) :=
equiv_dec : forall x y : A, { x == y } + { x =/= y }.
(** We define the [==] overloaded notation for deciding equality. It does not
take precedence of [==] defined in the type scope, hence we can have both
at the same time. *)
Notation " x == y " := (equiv_dec x y) (no associativity, at level 70).
Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } :=
match x with
| left H => @right _ _ H
| right H => @left _ _ H
end.
Require Import Coq.Program.Program.
Local Open Scope program_scope.
(** Invert the branches. *)
Program Definition nequiv_dec `{EqDec A} (x y : A) : { x =/= y } + { x == y } := swap_sumbool (x == y).
(** Overloaded notation for inequality. *)
Infix "=/=" := nequiv_dec (no associativity, at level 70).
(** Define boolean versions, losing the logical information. *)
Definition equiv_decb `{EqDec A} (x y : A) : bool :=
if x == y then true else false.
Definition nequiv_decb `{EqDec A} (x y : A) : bool :=
negb (equiv_decb x y).
Infix "==b" := equiv_decb (no associativity, at level 70).
Infix "<>b" := nequiv_decb (no associativity, at level 70).
(** Decidable leibniz equality instances. *)
Require Import Coq.Arith.Arith.
(** The equiv is buried inside the setoid, but we can recover
it by specifying which setoid we're talking about. *)
#[global]
Program Instance eq_setoid A : Setoid A | 10 :=
{ equiv := eq ; setoid_equiv := eq_equivalence }.
#[global]
Program Instance nat_eq_eqdec : EqDec (eq_setoid nat) :=
eq_nat_dec.
Require Import Coq.Bool.Bool.
#[global]
Program Instance bool_eqdec : EqDec (eq_setoid bool) :=
bool_dec.
#[global]
Program Instance unit_eqdec : EqDec (eq_setoid unit) :=
fun x y => in_left.
Next Obligation.
Proof.
do 2 match goal with x : () |- _ => destruct x end.
reflexivity.
Qed.
#[global]
Program Instance prod_eqdec `(! EqDec (eq_setoid A), ! EqDec (eq_setoid B))
: EqDec (eq_setoid (prod A B)) :=
fun x y =>
let '(x1, x2) := x in
let '(y1, y2) := y in
if x1 == y1 then
if x2 == y2 then in_left
else in_right
else in_right.
Solve Obligations with unfold complement ; program_simpl.
(** Objects of function spaces with countable domains like bool
have decidable equality. *)
#[global]
Program Instance bool_function_eqdec `(! EqDec (eq_setoid A))
: EqDec (eq_setoid (bool -> A)) :=
fun f g =>
if f true == g true then
if f false == g false then in_left
else in_right
else in_right.
Solve Obligations with try red ; unfold complement ; program_simpl.
Next Obligation.
Proof.
extensionality x.
destruct x ; auto.
Qed.
|