1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(** Reformulation of the Wf module using subsets where possible, providing
the support for [Program]'s treatment of well-founded definitions. *)
Require Import Coq.Init.Wf.
Require Import Coq.Program.Utils.
Local Open Scope program_scope.
Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Hypothesis Rwf : well_founded R.
Variable P : A -> Type.
Variable F_sub : forall x:A, (forall y: { y : A | R y x }, P (proj1_sig y)) -> P x.
Fixpoint Fix_F_sub (x : A) (r : Acc R x) : P x :=
F_sub x (fun y: { y : A | R y x} => Fix_F_sub (proj1_sig y)
(Acc_inv r (proj2_sig y))).
Definition Fix_sub (x : A) := Fix_F_sub x (Rwf x).
Register Fix_sub as program.wf.fix_sub.
(* Notation Fix_F := (Fix_F_sub P F_sub) (only parsing). (* alias *) *)
(* Definition Fix (x:A) := Fix_F_sub P F_sub x (Rwf x). *)
Hypothesis F_ext :
forall (x:A) (f g:forall y:{y:A | R y x}, P (`y)),
(forall y:{y : A | R y x}, f y = g y) -> F_sub x f = F_sub x g.
Lemma Fix_F_eq :
forall (x:A) (r:Acc R x),
F_sub x (fun y:{y:A | R y x} => Fix_F_sub (`y) (Acc_inv r (proj2_sig y))) = Fix_F_sub x r.
Proof.
intros x r; destruct r using Acc_inv_dep; auto.
Qed.
Lemma Fix_F_inv : forall (x:A) (r s:Acc R x), Fix_F_sub x r = Fix_F_sub x s.
Proof.
intro x; induction (Rwf x); intros.
rewrite <- 2 Fix_F_eq; intros. apply F_ext; intros []; auto.
Qed.
Lemma Fix_eq : forall x:A, Fix_sub x = F_sub x (fun y:{ y:A | R y x} => Fix_sub (proj1_sig y)).
Proof.
intro x; unfold Fix_sub.
rewrite <- (Fix_F_eq ).
apply F_ext; intros.
apply Fix_F_inv.
Qed.
Lemma fix_sub_eq :
forall x : A,
Fix_sub x =
let f_sub := F_sub in
f_sub x (fun y: {y : A | R y x} => Fix_sub (`y)).
Proof.
exact Fix_eq.
Qed.
End Well_founded.
Require Coq.extraction.Extraction.
Extraction Inline Fix_F_sub Fix_sub.
Set Implicit Arguments.
(** Reasoning about well-founded fixpoints on measures. *)
Section Measure_well_founded.
(* Measure relations are well-founded if the underlying relation is well-founded. *)
Variables T M: Type.
Variable R: M -> M -> Prop.
Hypothesis wf: well_founded R.
Variable m: T -> M.
Definition MR (x y: T): Prop := R (m x) (m y).
Register MR as program.wf.mr.
Lemma measure_wf: well_founded MR.
Proof with auto.
unfold well_founded.
cut (forall (a: M) (a0: T), m a0 = a -> Acc MR a0).
+ intros H a.
apply (H (m a))...
+ apply (@well_founded_ind M R wf (fun mm => forall a, m a = mm -> Acc MR a)).
intros ? H ? H0.
apply Acc_intro.
intros y H1.
unfold MR in H1.
rewrite H0 in H1.
apply (H (m y))...
Defined.
End Measure_well_founded.
#[global]
Hint Resolve measure_wf : core.
Section Fix_rects.
Variable A: Type.
Variable P: A -> Type.
Variable R : A -> A -> Prop.
Variable Rwf : well_founded R.
Variable f: forall (x : A), (forall y: { y: A | R y x }, P (proj1_sig y)) -> P x.
Lemma F_unfold x r:
Fix_F_sub A R P f x r =
f (fun y => Fix_F_sub A R P f (proj1_sig y) (Acc_inv r (proj2_sig y))).
Proof. intros. case r; auto. Qed.
(* Fix_F_sub_rect lets one prove a property of
functions defined using Fix_F_sub by showing
that property to be invariant over single application of the
function body (f in our case). *)
Lemma Fix_F_sub_rect
(Q: forall x, P x -> Type)
(inv: forall x: A,
(forall (y: A) (H: R y x) (a: Acc R y),
Q y (Fix_F_sub A R P f y a)) ->
forall (a: Acc R x),
Q x (f (fun y: {y: A | R y x} =>
Fix_F_sub A R P f (proj1_sig y) (Acc_inv a (proj2_sig y)))))
: forall x a, Q _ (Fix_F_sub A R P f x a).
Proof with auto.
set (R' := fun (x: A) => forall a, Q _ (Fix_F_sub A R P f x a)).
cut (forall x, R' x)...
apply (well_founded_induction_type Rwf).
subst R'.
simpl.
intros.
rewrite F_unfold...
Qed.
(* Let's call f's second parameter its "lowers" function, since it
provides it access to results for inputs with a lower measure.
In preparation of lemma similar to Fix_F_sub_rect, but
for Fix_sub, we first
need an extra hypothesis stating that the function body has the
same result for different "lowers" functions (g and h below) as long
as those produce the same results for lower inputs, regardless
of the lt proofs. *)
Hypothesis equiv_lowers:
forall x0 (g h: forall x: {y: A | R y x0}, P (proj1_sig x)),
(forall x p p', g (exist (fun y: A => R y x0) x p) = h (exist (*FIXME shouldn't be needed *) (fun y => R y x0) x p')) ->
f g = f h.
(* From equiv_lowers, it follows that
[Fix_F_sub A R P f x] applications do not not
depend on the Acc proofs. *)
Lemma eq_Fix_F_sub x (a a': Acc R x):
Fix_F_sub A R P f x a =
Fix_F_sub A R P f x a'.
Proof.
revert a'.
pattern x, (Fix_F_sub A R P f x a).
apply Fix_F_sub_rect.
intros ? H **.
rewrite F_unfold.
apply equiv_lowers.
intros.
apply H.
assumption.
Qed.
(* Finally, Fix_F_rect lets one prove a property of
functions defined using Fix_F_sub by showing that
property to be invariant over single application of the function
body (f). *)
Lemma Fix_sub_rect
(Q: forall x, P x -> Type)
(inv: forall
(x: A)
(H: forall (y: A), R y x -> Q y (Fix_sub A R Rwf P f y))
(a: Acc R x),
Q x (f (fun y: {y: A | R y x} => Fix_sub A R Rwf P f (proj1_sig y))))
: forall x, Q _ (Fix_sub A R Rwf P f x).
Proof with auto.
unfold Fix_sub.
intros x.
apply Fix_F_sub_rect.
intros x0 H a.
assert (forall y: A, R y x0 -> Q y (Fix_F_sub A R P f y (Rwf y))) as X0...
set (q := inv x0 X0 a). clearbody q.
rewrite <- (equiv_lowers (fun y: {y: A | R y x0} =>
Fix_F_sub A R P f (proj1_sig y) (Rwf (proj1_sig y)))
(fun y: {y: A | R y x0} => Fix_F_sub A R P f (proj1_sig y) (Acc_inv a (proj2_sig y))))...
intros.
apply eq_Fix_F_sub.
Qed.
End Fix_rects.
(** Tactic to fold a definition based on [Fix_measure_sub]. *)
Ltac fold_sub f :=
match goal with
| [ |- ?T ] =>
match T with
context C [ @Fix_sub _ _ _ _ _ ?arg ] =>
let app := context C [ f arg ] in
change app
end
end.
(** This module provides the fixpoint equation provided one assumes
functional extensionality. *)
Require Import FunctionalExtensionality.
Module WfExtensionality.
(** The two following lemmas allow to unfold a well-founded fixpoint definition without
restriction using the functional extensionality axiom. *)
(** For a function defined with Program using a well-founded order. *)
Program Lemma fix_sub_eq_ext :
forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
(P : A -> Type)
(F_sub : forall x : A, (forall y:{y : A | R y x}, P (` y)) -> P x),
forall x : A,
Fix_sub A R Rwf P F_sub x =
F_sub x (fun y:{y : A | R y x} => Fix_sub A R Rwf P F_sub (` y)).
Proof.
intros A R Rwf P F_sub x; apply Fix_eq ; auto.
intros ? f g H.
assert(f = g) as H0.
- extensionality y ; apply H.
- rewrite H0 ; auto.
Qed.
(** Tactic to unfold once a definition based on [Fix_sub]. *)
Ltac unfold_sub f fargs :=
set (call:=fargs) ; unfold f in call ; unfold call ; clear call ;
rewrite fix_sub_eq_ext ; repeat fold_sub f ; simpl proj1_sig.
End WfExtensionality.
|