1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*********************************************************************)
(** * List permutations as a composition of adjacent transpositions *)
(*********************************************************************)
(* Adapted in May 2006 by Jean-Marc Notin from initial contents by
Laurent Théry (Huffmann contribution, October 2003) *)
Require Import List Setoid Compare_dec Morphisms FinFun PeanoNat.
Import ListNotations. (* For notations [] and [a;b;c] *)
Set Implicit Arguments.
(* Set Universe Polymorphism. *)
Section Permutation.
Variable A:Type.
Inductive Permutation : list A -> list A -> Prop :=
| perm_nil: Permutation [] []
| perm_skip x l l' : Permutation l l' -> Permutation (x::l) (x::l')
| perm_swap x y l : Permutation (y::x::l) (x::y::l)
| perm_trans l l' l'' :
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Local Hint Constructors Permutation : core.
(** Some facts about [Permutation] *)
Theorem Permutation_nil : forall (l : list A), Permutation [] l -> l = [].
Proof.
intros l HF.
remember (@nil A) as m in HF.
induction HF; discriminate || auto.
Qed.
Theorem Permutation_nil_cons : forall (l : list A) (x : A),
~ Permutation nil (x::l).
Proof.
intros l x HF.
apply Permutation_nil in HF; discriminate.
Qed.
(** Permutation over lists is a equivalence relation *)
Theorem Permutation_refl : forall l : list A, Permutation l l.
Proof.
induction l; constructor. exact IHl.
Qed.
Instance Permutation_refl' : Proper (Logic.eq ==> Permutation) id.
Proof.
intros x y Heq; rewrite Heq; apply Permutation_refl.
Qed.
Theorem Permutation_sym : forall l l' : list A,
Permutation l l' -> Permutation l' l.
Proof.
intros l l' Hperm; induction Hperm; auto.
apply perm_trans with (l':=l'); assumption.
Qed.
Theorem Permutation_trans : forall l l' l'' : list A,
Permutation l l' -> Permutation l' l'' -> Permutation l l''.
Proof.
exact perm_trans.
Qed.
End Permutation.
#[global]
Hint Resolve Permutation_refl perm_nil perm_skip : core.
(* These hints do not reduce the size of the problem to solve and they
must be used with care to avoid combinatoric explosions *)
Local Hint Resolve perm_swap perm_trans : core.
Local Hint Resolve Permutation_sym Permutation_trans : core.
(* This provides reflexivity, symmetry and transitivity and rewriting
on morphims to come *)
#[global]
Instance Permutation_Equivalence A : Equivalence (@Permutation A) := {
Equivalence_Reflexive := @Permutation_refl A ;
Equivalence_Symmetric := @Permutation_sym A ;
Equivalence_Transitive := @Permutation_trans A }.
Lemma Permutation_morph_transp A : forall P : list A -> Prop,
(forall a b l1 l2, P (l1 ++ a :: b :: l2) -> P (l1 ++ b :: a :: l2)) ->
Proper (@Permutation A ==> Basics.impl) P.
Proof.
intros P HT l1 l2 HP.
enough (forall l0, P (l0 ++ l1) -> P (l0 ++ l2)) as IH
by (intro; rewrite <- (app_nil_l l2); now apply (IH nil)).
induction HP; intuition.
rewrite <- (app_nil_l l'), app_comm_cons, app_assoc.
now apply IHHP; rewrite <- app_assoc.
Qed.
#[export]
Instance Permutation_cons A :
Proper (Logic.eq ==> @Permutation A ==> @Permutation A) (@cons A).
Proof.
repeat intro; subst; auto using perm_skip.
Qed.
Section Permutation_properties.
Variable A B:Type.
Implicit Types a : A.
Implicit Types l m : list A.
(** Compatibility with others operations on lists *)
Theorem Permutation_in : forall (l l' : list A) (x : A),
Permutation l l' -> In x l -> In x l'.
Proof.
intros l l' x Hperm; induction Hperm; simpl; tauto.
Qed.
Global Instance Permutation_in' :
Proper (Logic.eq ==> @Permutation A ==> iff) (@In A).
Proof.
repeat red; intros; subst; eauto using Permutation_in.
Qed.
Lemma Permutation_app_tail : forall (l l' tl : list A),
Permutation l l' -> Permutation (l++tl) (l'++tl).
Proof.
intros l l' tl Hperm; induction Hperm as [|x l l'|x y l|l l' l'']; simpl; auto.
eapply Permutation_trans with (l':=l'++tl); trivial.
Qed.
Lemma Permutation_app_head : forall (l tl tl' : list A),
Permutation tl tl' -> Permutation (l++tl) (l++tl').
Proof.
intros l tl tl' Hperm; induction l;
[trivial | repeat rewrite <- app_comm_cons; constructor; assumption].
Qed.
Theorem Permutation_app : forall (l m l' m' : list A),
Permutation l l' -> Permutation m m' -> Permutation (l++m) (l'++m').
Proof.
intros l m l' m' Hpermll' Hpermmm';
induction Hpermll' as [|x l l'|x y l|l l' l''];
repeat rewrite <- app_comm_cons; auto.
- apply Permutation_trans with (l' := (x :: y :: l ++ m));
[idtac | repeat rewrite app_comm_cons; apply Permutation_app_head]; trivial.
- apply Permutation_trans with (l' := (l' ++ m')); try assumption.
apply Permutation_app_tail; assumption.
Qed.
#[export] Instance Permutation_app' :
Proper (@Permutation A ==> @Permutation A ==> @Permutation A) (@app A).
Proof.
repeat intro; now apply Permutation_app.
Qed.
Lemma Permutation_add_inside : forall a (l l' tl tl' : list A),
Permutation l l' -> Permutation tl tl' ->
Permutation (l ++ a :: tl) (l' ++ a :: tl').
Proof.
intros; apply Permutation_app; auto.
Qed.
Lemma Permutation_cons_append : forall (l : list A) x,
Permutation (x :: l) (l ++ x :: nil).
Proof. induction l; intros; auto. simpl. rewrite <- IHl; auto. Qed.
Local Hint Resolve Permutation_cons_append : core.
Theorem Permutation_app_comm : forall (l l' : list A),
Permutation (l ++ l') (l' ++ l).
Proof.
induction l as [|x l]; simpl; intro l'.
- rewrite app_nil_r; trivial.
- rewrite IHl.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_app_comm : core.
Lemma Permutation_app_rot : forall l1 l2 l3: list A,
Permutation (l1 ++ l2 ++ l3) (l2 ++ l3 ++ l1).
Proof.
intros l1 l2 l3; now rewrite (app_assoc l2).
Qed.
Local Hint Resolve Permutation_app_rot : core.
Lemma Permutation_app_swap_app : forall l1 l2 l3: list A,
Permutation (l1 ++ l2 ++ l3) (l2 ++ l1 ++ l3).
Proof.
intros.
rewrite 2 app_assoc.
apply Permutation_app_tail, Permutation_app_comm.
Qed.
Local Hint Resolve Permutation_app_swap_app : core.
Lemma Permutation_app_middle : forall l l1 l2 l3 l4,
Permutation (l1 ++ l2) (l3 ++ l4) ->
Permutation (l1 ++ l ++ l2) (l3 ++ l ++ l4).
Proof.
intros l l1 l2 l3 l4 HP.
now rewrite Permutation_app_swap_app, HP, Permutation_app_swap_app.
Qed.
Theorem Permutation_cons_app : forall (l l1 l2:list A) a,
Permutation l (l1 ++ l2) -> Permutation (a :: l) (l1 ++ a :: l2).
Proof.
intros l l1 l2 a H. rewrite H.
rewrite app_comm_cons, Permutation_cons_append.
now rewrite <- app_assoc.
Qed.
Local Hint Resolve Permutation_cons_app : core.
Lemma Permutation_Add a l l' : Add a l l' -> Permutation (a::l) l'.
Proof.
induction 1; simpl; trivial.
rewrite perm_swap. now apply perm_skip.
Qed.
Theorem Permutation_middle : forall (l1 l2:list A) a,
Permutation (a :: l1 ++ l2) (l1 ++ a :: l2).
Proof.
auto.
Qed.
Local Hint Resolve Permutation_middle : core.
Lemma Permutation_middle2 : forall l1 l2 l3 a b,
Permutation (a :: b :: l1 ++ l2 ++ l3) (l1 ++ a :: l2 ++ b :: l3).
Proof.
intros l1 l2 l3 a b.
apply Permutation_cons_app.
rewrite 2 app_assoc.
now apply Permutation_cons_app.
Qed.
Local Hint Resolve Permutation_middle2 : core.
Lemma Permutation_elt : forall l1 l2 l1' l2' (a:A),
Permutation (l1 ++ l2) (l1' ++ l2') ->
Permutation (l1 ++ a :: l2) (l1' ++ a :: l2').
Proof.
intros l1 l2 l1' l2' a HP.
transitivity (a :: l1 ++ l2); auto.
Qed.
Theorem Permutation_rev : forall (l : list A), Permutation l (rev l).
Proof.
induction l as [| x l]; simpl; trivial. now rewrite IHl at 1.
Qed.
Global Instance Permutation_rev' :
Proper (@Permutation A ==> @Permutation A) (@rev A).
Proof.
repeat intro; now rewrite <- 2 Permutation_rev.
Qed.
Theorem Permutation_length : forall (l l' : list A),
Permutation l l' -> length l = length l'.
Proof.
intros l l' Hperm; induction Hperm; simpl; auto. now transitivity (length l').
Qed.
Global Instance Permutation_length' :
Proper (@Permutation A ==> Logic.eq) (@length A) | 10.
Proof.
exact Permutation_length.
Qed.
Global Instance Permutation_Forall (P : A -> Prop) :
Proper ((@Permutation A) ==> Basics.impl) (Forall P).
Proof.
intros l1 l2 HP.
induction HP; intro HF; auto.
- inversion_clear HF; auto.
- inversion_clear HF as [ | ? ? HF1 HF2].
inversion_clear HF2; auto.
Qed.
Global Instance Permutation_Exists (P : A -> Prop) :
Proper ((@Permutation A) ==> Basics.impl) (Exists P).
Proof.
intros l1 l2 HP.
induction HP; intro HF; auto.
- inversion_clear HF; auto.
- inversion_clear HF as [ | ? ? HF1 ]; auto.
inversion_clear HF1; auto.
Qed.
Lemma Permutation_Forall2 (P : A -> B -> Prop) :
forall l1 l1' (l2 : list B), Permutation l1 l1' -> Forall2 P l1 l2 ->
exists l2' : list B, Permutation l2 l2' /\ Forall2 P l1' l2'.
Proof.
intros l1 l1' l2 HP.
revert l2; induction HP; intros l2 HF; inversion HF as [ | ? b ? ? HF1 HF2 ]; subst.
- now exists nil.
- apply IHHP in HF2 as [l2' [HP2 HF2]].
exists (b :: l2'); auto.
- inversion_clear HF2 as [ | ? b' ? l2' HF3 HF4 ].
exists (b' :: b :: l2'); auto.
- apply Permutation_nil in HP1; subst.
apply Permutation_nil in HP2; subst.
now exists nil.
- apply IHHP1 in HF as [l2' [HP2' HF2']].
apply IHHP2 in HF2' as [l2'' [HP2'' HF2'']].
exists l2''; split; auto.
now transitivity l2'.
Qed.
Theorem Permutation_ind_bis :
forall P : list A -> list A -> Prop,
P [] [] ->
(forall x l l', Permutation l l' -> P l l' -> P (x :: l) (x :: l')) ->
(forall x y l l', Permutation l l' -> P l l' -> P (y :: x :: l) (x :: y :: l')) ->
(forall l l' l'', Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
forall l l', Permutation l l' -> P l l'.
Proof.
intros P Hnil Hskip Hswap Htrans.
induction 1; auto.
- apply Htrans with (x::y::l); auto.
+ apply Hswap; auto.
induction l; auto.
+ apply Hskip; auto.
apply Hskip; auto.
induction l; auto.
- eauto.
Qed.
Theorem Permutation_nil_app_cons : forall (l l' : list A) (x : A),
~ Permutation nil (l++x::l').
Proof.
intros l l' x HF.
apply Permutation_nil in HF. destruct l; discriminate.
Qed.
Ltac InvAdd := repeat (match goal with
| H: Add ?x _ (_ :: _) |- _ => inversion H; clear H; subst
end).
Ltac finish_basic_perms H :=
try constructor; try rewrite perm_swap; try constructor; trivial;
(rewrite <- H; now apply Permutation_Add) ||
(rewrite H; symmetry; now apply Permutation_Add).
Theorem Permutation_Add_inv a l1 l2 :
Permutation l1 l2 -> forall l1' l2', Add a l1' l1 -> Add a l2' l2 ->
Permutation l1' l2'.
Proof.
revert l1 l2. refine (Permutation_ind_bis _ _ _ _ _).
- (* nil *)
inversion_clear 1.
- (* skip *)
intros x l1 l2 PE IH. intros. InvAdd; try finish_basic_perms PE.
constructor. now apply IH.
- (* swap *)
intros x y l1 l2 PE IH. intros. InvAdd; try finish_basic_perms PE.
rewrite perm_swap; do 2 constructor. now apply IH.
- (* trans *)
intros l1 l l2 PE IH PE' IH' l1' l2' AD1 AD2.
assert (Ha : In a l). { rewrite <- PE. rewrite (Add_in AD1). simpl; auto. }
destruct (Add_inv _ _ Ha) as (l',AD).
transitivity l'; auto.
Qed.
Theorem Permutation_app_inv (l1 l2 l3 l4:list A) a :
Permutation (l1++a::l2) (l3++a::l4) -> Permutation (l1++l2) (l3 ++ l4).
Proof.
intros. eapply Permutation_Add_inv; eauto using Add_app.
Qed.
Theorem Permutation_cons_inv l l' a :
Permutation (a::l) (a::l') -> Permutation l l'.
Proof.
intro. eapply Permutation_Add_inv; eauto using Add_head.
Qed.
Theorem Permutation_cons_app_inv l l1 l2 a :
Permutation (a :: l) (l1 ++ a :: l2) -> Permutation l (l1 ++ l2).
Proof.
intro. eapply Permutation_Add_inv; eauto using Add_head, Add_app.
Qed.
Theorem Permutation_app_inv_l : forall l l1 l2,
Permutation (l ++ l1) (l ++ l2) -> Permutation l1 l2.
Proof.
induction l; simpl; auto.
intros.
apply IHl.
apply Permutation_cons_inv with a; auto.
Qed.
Theorem Permutation_app_inv_r l l1 l2 :
Permutation (l1 ++ l) (l2 ++ l) -> Permutation l1 l2.
Proof.
rewrite 2 (Permutation_app_comm _ l). apply Permutation_app_inv_l.
Qed.
Lemma Permutation_app_inv_m l l1 l2 l3 l4 :
Permutation (l1 ++ l ++ l2) (l3 ++ l ++ l4) ->
Permutation (l1 ++ l2) (l3 ++ l4).
Proof.
intros HP.
apply (Permutation_app_inv_l l).
transitivity (l1 ++ l ++ l2); auto.
transitivity (l3 ++ l ++ l4); auto.
Qed.
Lemma Permutation_length_1_inv: forall a l, Permutation [a] l -> l = [a].
Proof.
intros a l H; remember [a] as m in H.
induction H; try (injection Heqm as [= -> ->]);
discriminate || auto.
apply Permutation_nil in H as ->; trivial.
Qed.
Lemma Permutation_length_1: forall a b, Permutation [a] [b] -> a = b.
Proof.
intros a b H.
apply Permutation_length_1_inv in H; injection H as [= ->]; trivial.
Qed.
Lemma Permutation_length_2_inv :
forall a1 a2 l, Permutation [a1;a2] l -> l = [a1;a2] \/ l = [a2;a1].
Proof.
intros a1 a2 l H; remember [a1;a2] as m in H.
revert a1 a2 Heqm.
induction H; intros; try (injection Heqm as [= ? ?]; subst);
discriminate || (try tauto).
- apply Permutation_length_1_inv in H as ->; left; auto.
- apply IHPermutation1 in Heqm as [H1|H1]; apply IHPermutation2 in H1 as [];
auto.
Qed.
Lemma Permutation_length_2 :
forall a1 a2 b1 b2, Permutation [a1;a2] [b1;b2] ->
a1 = b1 /\ a2 = b2 \/ a1 = b2 /\ a2 = b1.
Proof.
intros a1 b1 a2 b2 H.
apply Permutation_length_2_inv in H as [H|H]; injection H as [= -> ->]; auto.
Qed.
Lemma Permutation_vs_elt_inv : forall l l1 l2 a,
Permutation l (l1 ++ a :: l2) -> exists l' l'', l = l' ++ a :: l''.
Proof.
intros l l1 l2 a HP.
symmetry in HP.
apply (Permutation_in a), in_split in HP; trivial.
apply in_elt.
Qed.
Lemma Permutation_vs_cons_inv : forall l l1 a,
Permutation l (a :: l1) -> exists l' l'', l = l' ++ a :: l''.
Proof.
intros l l1 a HP.
rewrite <- (app_nil_l (a :: l1)) in HP.
apply (Permutation_vs_elt_inv _ _ _ HP).
Qed.
Lemma Permutation_vs_cons_cons_inv : forall l l' a b,
Permutation l (a :: b :: l') ->
exists l1 l2 l3, l = l1 ++ a :: l2 ++ b :: l3 \/ l = l1 ++ b :: l2 ++ a :: l3.
Proof.
intros l l' a b HP.
destruct (Permutation_vs_cons_inv HP) as [l1 [l2]]; subst.
symmetry in HP.
apply Permutation_cons_app_inv in HP.
apply (Permutation_in b), in_app_or in HP; [|now apply in_eq].
destruct HP as [(l3 & l4 & ->)%in_split | (l3 & l4 & ->)%in_split].
- exists l3, l4, l2; right.
now rewrite <-app_assoc; simpl.
- now exists l1, l3, l4; left.
Qed.
Lemma NoDup_Permutation l l' : NoDup l -> NoDup l' ->
(forall x:A, In x l <-> In x l') -> Permutation l l'.
Proof.
intros N. revert l'. induction N as [|a l Hal Hl IH].
- destruct l'; simpl; auto.
intros Hl' H. exfalso. rewrite (H a); auto.
- intros l' Hl' H.
assert (Ha : In a l') by (apply H; simpl; auto).
destruct (Add_inv _ _ Ha) as (l'' & AD).
rewrite <- (Permutation_Add AD).
apply perm_skip.
apply IH; clear IH.
* now apply (NoDup_Add AD).
* split.
+ apply incl_Add_inv with a l'; trivial. intro. apply H.
+ intro Hx.
assert (Hx' : In x (a::l)).
{ apply H. rewrite (Add_in AD). now right. }
destruct Hx'; simpl; trivial. subst.
rewrite (NoDup_Add AD) in Hl'. tauto.
Qed.
Lemma NoDup_Permutation_bis l l' : NoDup l ->
length l' <= length l -> incl l l' -> Permutation l l'.
Proof.
intros. apply NoDup_Permutation; auto.
- now apply NoDup_incl_NoDup with l.
- split; auto.
apply NoDup_length_incl; trivial.
Qed.
Lemma Permutation_NoDup l l' : Permutation l l' -> NoDup l -> NoDup l'.
Proof.
induction 1; auto.
- inversion_clear 1; constructor; eauto using Permutation_in.
- inversion_clear 1 as [|? ? H1 H2]. inversion_clear H2; simpl in *.
constructor.
+ simpl; intuition.
+ constructor; intuition.
Qed.
Global Instance Permutation_NoDup' :
Proper (@Permutation A ==> iff) (@NoDup A).
Proof.
repeat red; eauto using Permutation_NoDup.
Qed.
Lemma Permutation_repeat x n l :
Permutation l (repeat x n) -> l = repeat x n.
Proof.
revert n; induction l as [|y l IHl] ; simpl; intros n HP; auto.
- now apply Permutation_nil in HP; inversion HP.
- assert (y = x) as Heq by (now apply repeat_spec with n, (Permutation_in _ HP); left); subst.
destruct n; simpl; simpl in HP.
+ symmetry in HP; apply Permutation_nil in HP; inversion HP.
+ f_equal; apply IHl.
now apply Permutation_cons_inv with x.
Qed.
Lemma Permutation_incl_cons_inv_r (l1 l2 : list A) a : incl l1 (a :: l2) ->
exists n l3, Permutation l1 (repeat a n ++ l3) /\ incl l3 l2.
Proof.
induction l1 as [|b l1 IH].
- intros _. now exists 0, nil.
- intros [Hb Hincl] %incl_cons_inv.
destruct (IH Hincl) as [n [l3 [Hl1 Hl3l2]]].
destruct Hb.
+ subst b. exists (S n), l3. eauto.
+ exists n, (b :: l3). eauto using incl_cons.
Qed.
Lemma Permutation_pigeonhole l1 l2 : incl l1 l2 -> length l2 < length l1 ->
exists a l3, Permutation l1 (a :: a :: l3).
Proof.
induction l2 as [|a l2 IH] in l1 |- *.
- intros -> %incl_l_nil [] %PeanoNat.Nat.nlt_0_r.
- intros [[|[|n]] [l4 [Hl1 Hl4]]] %Permutation_incl_cons_inv_r Hlen.
+ apply IH.
* unfold incl. eauto using Permutation_in.
* eauto using PeanoNat.Nat.lt_trans.
+ assert (Hl2l4 : length l2 < length l4).
{ rewrite (Permutation_length Hl1) in Hlen.
now apply PeanoNat.Nat.succ_lt_mono. }
destruct (IH l4 Hl4 Hl2l4) as [b [l3 Hl4l3]].
exists b, (a :: l3).
apply (Permutation_trans Hl1).
now apply (Permutation_cons_app (b :: b :: nil)).
+ now exists a, (repeat a n ++ l4).
Qed.
Lemma Permutation_pigeonhole_rel (R : B -> A -> Prop) (l1 : list B) l2 :
Forall (fun b => Exists (R b) l2) l1 ->
length l2 < length l1 ->
exists b b' (l3 : list B), Permutation l1 (b :: b' :: l3) /\ exists a, In a l2 /\ R b a /\ R b' a.
Proof.
intros [l2' [Hl2'l1 Hl2'l2]]%Forall_Exists_exists_Forall2.
intros Hl2l2'. rewrite (Forall2_length Hl2'l1) in Hl2l2'.
destruct (Permutation_pigeonhole Hl2'l2 Hl2l2') as [a [l3 Hl2']].
destruct (Permutation_Forall2 Hl2' (Forall2_flip Hl2'l1)) as [l1' [Hl1l1' Hl1']].
destruct (Forall2_app_inv_l [a; a] l3 Hl1') as [lbb' [l1'' [Ha [? ?]]]].
assert (Hlbb' := Forall2_length Ha).
destruct lbb' as [|b lb']; [easy|].
apply Forall2_cons_iff in Ha as [Hba Ha].
destruct lb' as [|b' l]; [easy|].
apply Forall2_cons_iff in Ha as [Hb'a Ha].
inversion Ha. subst. exists b, b', l1''.
split; [easy|]. exists a.
split; eauto using Permutation_in, in_eq.
Qed.
Hypothesis eq_dec : forall x y : A, {x = y}+{x <> y}.
Lemma Permutation_count_occ l1 l2 :
Permutation l1 l2 <-> forall x, count_occ eq_dec l1 x = count_occ eq_dec l2 x.
Proof.
split.
- induction 1 as [ | y l1 l2 HP IHP | y z l | l1 l2 l3 HP1 IHP1 HP2 IHP2 ];
cbn; intros a; auto.
+ now rewrite IHP.
+ destruct (eq_dec y a); destruct (eq_dec z a); auto.
+ now rewrite IHP1, IHP2.
- revert l2; induction l1 as [|y l1 IHl1]; cbn; intros l2 Hocc.
+ replace l2 with (@nil A); auto.
symmetry; apply (count_occ_inv_nil eq_dec); intuition.
+ assert (exists l2' l2'', l2 = l2' ++ y :: l2'') as [l2' [l2'' ->]].
{ specialize (Hocc y).
destruct (eq_dec y y); intuition.
apply in_split, (count_occ_In eq_dec).
rewrite <- Hocc; apply Nat.lt_0_succ. }
apply Permutation_cons_app, IHl1.
intros z; specialize (Hocc z); destruct (eq_dec y z) as [Heq | Hneq].
* rewrite (count_occ_elt_eq _ _ _ Heq) in Hocc.
now injection Hocc.
* now rewrite (count_occ_elt_neq _ _ _ Hneq) in Hocc.
Qed.
End Permutation_properties.
Section Permutation_map.
Variable A B : Type.
Variable f : A -> B.
Lemma Permutation_map l l' :
Permutation l l' -> Permutation (map f l) (map f l').
Proof.
induction 1; simpl; eauto.
Qed.
Global Instance Permutation_map' :
Proper (@Permutation A ==> @Permutation B) (map f).
Proof.
exact Permutation_map.
Qed.
Lemma Permutation_map_inv : forall l1 l2,
Permutation l1 (map f l2) -> exists l3, l1 = map f l3 /\ Permutation l2 l3.
Proof.
induction l1; intros l2 HP.
- exists nil; split; auto.
apply Permutation_nil in HP.
destruct l2; auto.
inversion HP.
- symmetry in HP.
destruct (Permutation_vs_cons_inv HP) as [l3 [l4 Heq]].
destruct (map_eq_app _ _ _ _ Heq) as [l1' [l2' [Heq1 [Heq2 Heq3]]]]; subst.
destruct (map_eq_cons _ _ Heq3) as [b [l1'' [Heq1' [Heq2' Heq3']]]]; subst.
rewrite map_app in HP; simpl in HP.
symmetry in HP.
apply Permutation_cons_app_inv in HP.
rewrite <- map_app in HP.
destruct (IHl1 _ HP) as [l3 [Heq1'' Heq2'']]; subst.
exists (b :: l3); split; auto.
symmetry in Heq2''; symmetry; apply (Permutation_cons_app _ _ _ Heq2'').
Qed.
Lemma Permutation_image : forall a l l',
Permutation (a :: l) (map f l') -> exists a', a = f a'.
Proof.
intros a l l' HP.
destruct (Permutation_map_inv _ HP) as [l'' [Heq _]].
destruct l'' as [ | a' l'']; inversion_clear Heq.
now exists a'.
Qed.
Lemma Permutation_elt_map_inv: forall l1 l2 l3 l4 a,
Permutation (l1 ++ a :: l2) (l3 ++ map f l4) -> (forall b, a <> f b) ->
exists l1' l2', l3 = l1' ++ a :: l2'.
Proof.
intros l1 l2 l3 l4 a HP Hf.
apply (Permutation_in a), in_app_or in HP; [| now apply in_elt].
destruct HP as [HP%in_split | (x & Heq & ?)%in_map_iff]; trivial; subst.
now contradiction (Hf x).
Qed.
Global Instance Permutation_flat_map (g : A -> list B) :
Proper ((@Permutation A) ==> (@Permutation B)) (flat_map g).
Proof.
intros l1; induction l1; intros l2 HP.
- now apply Permutation_nil in HP; subst.
- symmetry in HP.
destruct (Permutation_vs_cons_inv HP) as [l' [l'']]; subst.
symmetry in HP.
apply Permutation_cons_app_inv in HP.
rewrite flat_map_app; simpl.
rewrite <- (app_nil_l _).
apply Permutation_app_middle; simpl.
rewrite <- flat_map_app.
apply (IHl1 _ HP).
Qed.
End Permutation_map.
Lemma nat_bijection_Permutation n f :
bFun n f ->
Injective f ->
let l := seq 0 n in Permutation (map f l) l.
Proof.
intros Hf BD.
apply NoDup_Permutation_bis; auto using Injective_map_NoDup, seq_NoDup.
* now rewrite length_map.
* intros x. rewrite in_map_iff. intros (y & <- & Hy').
rewrite in_seq in *. simpl in *.
destruct Hy' as (_,Hy').
split; [ apply Nat.le_0_l | auto ].
Qed.
Section Permutation_alt.
Variable A:Type.
Implicit Type a : A.
Implicit Type l : list A.
(** Alternative characterization of permutation
via [nth_error] and [nth] *)
Let adapt f n :=
let m := f (S n) in if le_lt_dec m (f 0) then m else pred m.
Local Definition adapt_injective f : Injective f -> Injective (adapt f).
Proof.
unfold adapt. intros Hf x y EQ.
destruct le_lt_dec as [LE|LT]; destruct le_lt_dec as [LE'|LT'].
- now apply eq_add_S, Hf.
- apply Nat.lt_eq_cases in LE.
destruct LE as [LT|EQ']; [|now apply Hf in EQ'].
unfold lt in LT. rewrite EQ in LT.
rewrite (Nat.lt_succ_pred _ _ LT') in LT.
elim (proj1 (Nat.lt_nge _ _) LT' LT).
- apply Nat.lt_eq_cases in LE'.
destruct LE' as [LT'|EQ']; [|now apply Hf in EQ'].
unfold lt in LT'. rewrite <- EQ in LT'.
rewrite (Nat.lt_succ_pred _ _ LT) in LT'.
elim (proj1 (Nat.lt_nge _ _) LT LT').
- apply eq_add_S, Hf.
now rewrite <- (Nat.lt_succ_pred _ _ LT), <- (Nat.lt_succ_pred _ _ LT'), EQ.
Defined.
Local Definition adapt_ok a l1 l2 f : Injective f -> length l1 = f 0 ->
forall n, nth_error (l1++a::l2) (f (S n)) = nth_error (l1++l2) (adapt f n).
Proof.
unfold adapt. intros Hf E n.
destruct le_lt_dec as [LE|LT].
- apply Nat.lt_eq_cases in LE.
destruct LE as [LT|EQ]; [|now apply Hf in EQ].
rewrite <- E in LT.
rewrite 2 nth_error_app1; auto.
- rewrite <- (Nat.lt_succ_pred _ _ LT) at 1.
rewrite <- E, <- (Nat.lt_succ_pred _ _ LT) in LT.
rewrite 2 nth_error_app2.
+ rewrite Nat.sub_succ_l; [ reflexivity | ].
apply Nat.lt_succ_r; assumption.
+ apply Nat.lt_succ_r; assumption.
+ apply Nat.lt_le_incl; assumption.
Defined.
Lemma Permutation_nth_error l l' :
Permutation l l' <->
(length l = length l' /\
exists f:nat->nat,
Injective f /\ forall n, nth_error l' n = nth_error l (f n)).
Proof.
split.
{ intros P.
split; [now apply Permutation_length|].
induction P.
- exists (fun n => n).
split; try red; auto.
- destruct IHP as (f & Hf & Hf').
exists (fun n => match n with O => O | S n => S (f n) end).
split; try red.
* intros [|y] [|z]; simpl; now auto.
* intros [|n]; simpl; auto.
- exists (fun n => match n with 0 => 1 | 1 => 0 | n => n end).
split; try red.
* intros [|[|z]] [|[|t]]; simpl; now auto.
* intros [|[|n]]; simpl; auto.
- destruct IHP1 as (f & Hf & Hf').
destruct IHP2 as (g & Hg & Hg').
exists (fun n => f (g n)).
split; try red.
* auto.
* intros n. rewrite <- Hf'; auto. }
{ revert l. induction l'.
- intros [|l] (E & _); now auto.
- intros l (E & f & Hf & Hf').
simpl in E.
assert (Ha : nth_error l (f 0) = Some a)
by (symmetry; apply (Hf' 0)).
destruct (nth_error_split l (f 0) Ha) as (l1 & l2 & L12 & L1).
rewrite L12. rewrite <- Permutation_middle. constructor.
apply IHl'; split; [|exists (adapt f); split].
* revert E. rewrite L12, !length_app. simpl.
rewrite <- plus_n_Sm. now injection 1.
* now apply adapt_injective.
* intro n. rewrite <- (adapt_ok a), <- L12; auto.
apply (Hf' (S n)). }
Qed.
Lemma Permutation_nth_error_bis l l' :
Permutation l l' <->
exists f:nat->nat,
Injective f /\
bFun (length l) f /\
(forall n, nth_error l' n = nth_error l (f n)).
Proof.
rewrite Permutation_nth_error; split.
- intros (E & f & Hf & Hf').
exists f. do 2 (split; trivial).
intros n Hn.
destruct (Nat.le_gt_cases (length l) (f n)) as [LE|LT]; trivial.
rewrite <- nth_error_None, <- Hf', nth_error_None, <- E in LE.
elim (proj1 (Nat.lt_nge _ _) Hn LE).
- intros (f & Hf & Hf2 & Hf3); split; [|exists f; auto].
assert (H : length l' <= length l') by auto.
rewrite <- nth_error_None, Hf3, nth_error_None in H.
destruct (Nat.le_gt_cases (length l) (length l')) as [LE|LT];
[|apply Hf2 in LT; elim (proj1 (Nat.lt_nge _ _) LT H)].
apply Nat.lt_eq_cases in LE. destruct LE as [LT|EQ]; trivial.
rewrite <- nth_error_Some, Hf3, nth_error_Some in LT.
assert (Hf' : bInjective (length l) f).
{ intros x y _ _ E. now apply Hf. }
rewrite (bInjective_bSurjective Hf2) in Hf'.
destruct (Hf' _ LT) as (y & Hy & Hy').
apply Hf in Hy'. subst y. elim (Nat.lt_irrefl _ Hy).
Qed.
Lemma Permutation_nth l l' d :
Permutation l l' <->
(let n := length l in
length l' = n /\
exists f:nat->nat,
bFun n f /\
bInjective n f /\
(forall x, x < n -> nth x l' d = nth (f x) l d)).
Proof.
split.
- intros H.
assert (E := Permutation_length H).
split; auto.
apply Permutation_nth_error_bis in H.
destruct H as (f & Hf & Hf2 & Hf3).
exists f. split; [|split]; auto.
+ intros x y _ _ Hxy. now apply Hf.
+ intros n Hn. rewrite <- 2 nth_default_eq. unfold nth_default.
now rewrite Hf3.
- intros (E & f & Hf1 & Hf2 & Hf3).
rewrite Permutation_nth_error.
split; auto.
exists (fun n => if le_lt_dec (length l) n then n else f n).
split.
* intros x y.
destruct le_lt_dec as [LE|LT];
destruct le_lt_dec as [LE'|LT']; auto.
+ apply Hf1 in LT'. intros ->.
elim (Nat.lt_irrefl (f y)). eapply Nat.lt_le_trans; eauto.
+ apply Hf1 in LT. intros <-.
elim (Nat.lt_irrefl (f x)). eapply Nat.lt_le_trans; eauto.
* intros n.
destruct le_lt_dec as [LE|LT].
+ assert (LE' : length l' <= n) by (now rewrite E).
rewrite <- nth_error_None in LE, LE'. congruence.
+ assert (LT' : n < length l') by (now rewrite E).
specialize (Hf3 n LT). rewrite <- 2 nth_default_eq in Hf3.
unfold nth_default in Hf3.
apply Hf1 in LT.
rewrite <- nth_error_Some in LT, LT'.
do 2 destruct nth_error; congruence.
Qed.
End Permutation_alt.
#[global]
Instance Permutation_list_sum : Proper (@Permutation nat ==> eq) list_sum | 10.
Proof.
intros l1 l2 HP; induction HP; simpl; intuition.
- rewrite 2 (Nat.add_comm x).
apply Nat.add_assoc.
- now transitivity (list_sum l').
Qed.
#[global]
Instance Permutation_list_max : Proper (@Permutation nat ==> eq) list_max | 10.
Proof.
intros l1 l2 HP; induction HP; simpl; intuition.
- rewrite 2 (Nat.max_comm x).
apply Nat.max_assoc.
- now transitivity (list_max l').
Qed.
Section Permutation_transp.
Variable A:Type.
(** Permutation definition based on transpositions for induction with fixed length *)
Inductive Permutation_transp : list A -> list A -> Prop :=
| perm_t_refl : forall l, Permutation_transp l l
| perm_t_swap : forall x y l1 l2, Permutation_transp (l1 ++ y :: x :: l2) (l1 ++ x :: y :: l2)
| perm_t_trans l l' l'' :
Permutation_transp l l' -> Permutation_transp l' l'' -> Permutation_transp l l''.
Instance Permutation_transp_sym : Symmetric Permutation_transp.
Proof.
intros l1 l2 HP; induction HP; subst; try (now constructor).
now apply (perm_t_trans IHHP2).
Qed.
Global Instance Permutation_transp_equiv : Equivalence Permutation_transp | 100.
Proof.
split.
- intros l; apply perm_t_refl.
- apply Permutation_transp_sym.
- intros l1 l2 l3 ;apply perm_t_trans.
Qed.
Lemma Permutation_transp_cons : forall (x : A) l1 l2,
Permutation_transp l1 l2 -> Permutation_transp (x :: l1) (x :: l2).
Proof.
intros x l1 l2 HP.
induction HP.
- reflexivity.
- rewrite 2 app_comm_cons.
apply perm_t_swap.
- now transitivity (x :: l').
Qed.
Lemma Permutation_Permutation_transp : forall l1 l2 : list A,
Permutation l1 l2 <-> Permutation_transp l1 l2.
Proof.
intros l1 l2; split; intros HP; induction HP; intuition auto.
- solve_relation.
- now apply Permutation_transp_cons.
- rewrite <- (app_nil_l (y :: _)).
rewrite <- (app_nil_l (x :: y :: _)).
apply perm_t_swap.
- now transitivity l'.
- apply Permutation_app_head.
apply perm_swap.
- now transitivity l'.
Qed.
Lemma Permutation_ind_transp : forall P : list A -> list A -> Prop,
(forall l, P l l) ->
(forall x y l1 l2, P (l1 ++ y :: x :: l2) (l1 ++ x :: y :: l2)) ->
(forall l l' l'',
Permutation l l' -> P l l' -> Permutation l' l'' -> P l' l'' -> P l l'') ->
forall l1 l2, Permutation l1 l2 -> P l1 l2.
Proof.
intros P Hr Ht Htr l1 l2 HP; apply Permutation_Permutation_transp in HP.
revert Hr Ht Htr; induction HP; intros Hr Ht Htr; auto.
apply (Htr _ l'); intuition; now apply Permutation_Permutation_transp.
Qed.
End Permutation_transp.
(* begin hide *)
Notation Permutation_app_swap := Permutation_app_comm (only parsing).
(* end hide *)
|