1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* This is mostly a translation of OCaml stdlib/array.ml *)
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
Require Import Ltac2.Init.
Require Ltac2.Int.
Require Ltac2.Control.
Require Ltac2.Bool.
Require Ltac2.Message.
(* Question: what is returned in case of an out of range value?
Answer: Ltac2 throws a panic *)
Ltac2 @external empty : 'a array := "coq-core.plugins.ltac2" "array_empty".
Ltac2 @external make : int -> 'a -> 'a array := "coq-core.plugins.ltac2" "array_make".
Ltac2 @external length : 'a array -> int := "coq-core.plugins.ltac2" "array_length".
Ltac2 @external get : 'a array -> int -> 'a := "coq-core.plugins.ltac2" "array_get".
Ltac2 @external set : 'a array -> int -> 'a -> unit := "coq-core.plugins.ltac2" "array_set".
Ltac2 @external lowlevel_blit : 'a array -> int -> 'a array -> int -> int -> unit := "coq-core.plugins.ltac2" "array_blit".
Ltac2 @external lowlevel_fill : 'a array -> int -> int -> 'a -> unit := "coq-core.plugins.ltac2" "array_fill".
Ltac2 @external concat : ('a array) list -> 'a array := "coq-core.plugins.ltac2" "array_concat".
(* Low level array operations *)
Ltac2 lowlevel_sub (arr : 'a array) (start : int) (len : int) :=
let l := length arr in
match Int.equal l 0 with
| true => empty
| false =>
let newarr:=make len (get arr 0) in
lowlevel_blit arr start newarr 0 len;
newarr
end.
(* Array functions as defined in the OCaml library *)
Ltac2 init (l : int) (f : int->'a) :=
let rec init_aux (dst : 'a array) (pos : int) (len : int) (f : int->'a) :=
match Int.equal len 0 with
| true => ()
| false =>
set dst pos (f pos);
init_aux dst (Int.add pos 1) (Int.sub len 1) f
end
in
match Int.le l 0 with
| true => empty
| false =>
let arr:=make l (f 0) in
init_aux arr 1 (Int.sub l 1) f;
arr
end.
Ltac2 make_matrix (sx : int) (sy : int) (v : 'a) :=
let init1 _ := v in
let initr _ := init sy init1 in
init sx initr.
Ltac2 copy a := lowlevel_sub a 0 (length a).
Ltac2 append (a1 : 'a array) (a2 : 'a array) :=
match Int.equal (length a1) 0 with
| true => copy a2
| false => match Int.equal (length a2) 0 with
| true => copy a1
| false =>
let newarr:=make (Int.add (length a1) (length a2)) (get a1 0) in
lowlevel_blit a1 0 newarr 0 (length a1);
lowlevel_blit a2 0 newarr (length a1) (length a2);
newarr
end
end.
Ltac2 sub (a : 'a array) (ofs : int) (len : int) :=
Control.assert_valid_argument "Array.sub ofs<0" (Int.ge ofs 0);
Control.assert_valid_argument "Array.sub len<0" (Int.ge len 0);
Control.assert_bounds "Array.sub" (Int.le ofs (Int.sub (length a) len));
lowlevel_sub a ofs len.
Ltac2 fill (a : 'a array) (ofs : int) (len : int) (v : 'a) :=
Control.assert_valid_argument "Array.fill ofs<0" (Int.ge ofs 0);
Control.assert_valid_argument "Array.fill len<0" (Int.ge len 0);
Control.assert_bounds "Array.fill" (Int.le ofs (Int.sub (length a) len));
lowlevel_fill a ofs len v.
Ltac2 blit (a1 : 'a array) (ofs1 : int) (a2 : 'a array) (ofs2 : int) (len : int) :=
Control.assert_valid_argument "Array.blit ofs1<0" (Int.ge ofs1 0);
Control.assert_valid_argument "Array.blit ofs2<0" (Int.ge ofs2 0);
Control.assert_valid_argument "Array.blit len<0" (Int.ge len 0);
Control.assert_bounds "Array.blit ofs1+len>len a1" (Int.le ofs1 (Int.sub (length a1) len));
Control.assert_bounds "Array.blit ofs2+len>len a2" (Int.le ofs2 (Int.sub (length a2) len));
lowlevel_blit a1 ofs1 a2 ofs2 len.
Ltac2 rec iter_aux (f : 'a -> unit) (a : 'a array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => ()
| false => f (get a pos); iter_aux f a (Int.add pos 1) (Int.sub len 1)
end.
Ltac2 iter (f : 'a -> unit) (a : 'a array) := iter_aux f a 0 (length a).
Ltac2 rec iter2_aux (f : 'a -> 'b -> unit) (a : 'a array) (b : 'b array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => ()
| false => f (get a pos) (get b pos); iter2_aux f a b (Int.add pos 1) (Int.sub len 1)
end.
Ltac2 rec iter2 (f : 'a -> 'b -> unit) (a : 'a array) (b : 'b array) :=
Control.assert_valid_argument "Array.iter2" (Int.equal (length a) (length b));
iter2_aux f a b 0 (length a).
Ltac2 map (f : 'a -> 'b) (a : 'a array) :=
init (length a) (fun i => f (get a i)).
Ltac2 map2 (f : 'a -> 'b -> 'c) (a : 'a array) (b : 'b array) :=
Control.assert_valid_argument "Array.map2" (Int.equal (length a) (length b));
init (length a) (fun i => f (get a i) (get b i)).
Ltac2 rec iteri_aux (f : int -> 'a -> unit) (a : 'a array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => ()
| false => f pos (get a pos); iteri_aux f a (Int.add pos 1) (Int.sub len 1)
end.
Ltac2 iteri (f : int -> 'a -> unit) (a : 'a array) := iteri_aux f a 0 (length a).
Ltac2 mapi (f : int -> 'a -> 'b) (a : 'a array) :=
init (length a) (fun i => f i (get a i)).
Ltac2 rec to_list_aux (a : 'a array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => []
| false => get a pos :: to_list_aux a (Int.add pos 1) (Int.sub len 1)
end.
Ltac2 to_list (a : 'a array) := to_list_aux a 0 (length a).
Ltac2 rec of_list_aux (ls : 'a list) (dst : 'a array) (pos : int) :=
match ls with
| [] => ()
| hd::tl =>
set dst pos hd;
of_list_aux tl dst (Int.add pos 1)
end.
Ltac2 of_list (ls : 'a list) :=
(* Don't use List.length here because the List module might depend on Array some day *)
let rec list_length (ls : 'a list) :=
match ls with
| [] => 0
| _ :: tl => Int.add 1 (list_length tl)
end in
match ls with
| [] => empty
| hd :: _ =>
let anew := make (list_length ls) hd in
of_list_aux ls anew 0;
anew
end.
Ltac2 rec fold_left_aux (f : 'a -> 'b -> 'a) (x : 'a) (a : 'b array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => x
| false => fold_left_aux f (f x (get a pos)) a (Int.add pos 1) (Int.sub len 1)
end.
Ltac2 fold_left (f : 'a -> 'b -> 'a) (x : 'a) (a : 'b array) : 'a :=
fold_left_aux f x a 0 (length a).
Ltac2 rec fold_right_aux (f : 'a -> 'b -> 'b) (a : 'a array) (x : 'b) (pos : int) (len : int) :=
(* Note: one could compare pos<0.
We keep an extra len parameter so that the function can be used for any sub array *)
match Int.equal len 0 with
| true => x
| false => fold_right_aux f a (f (get a pos) x) (Int.sub pos 1) (Int.sub len 1)
end.
Ltac2 fold_right (f : 'a -> 'b -> 'b) (a : 'a array) (x : 'b) : 'b :=
fold_right_aux f a x (Int.sub (length a) 1) (length a).
Ltac2 rec exist_aux (p : 'a -> bool) (a : 'a array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => false
| false => match p (get a pos) with
| true => true
| false => exist_aux p a (Int.add pos 1) (Int.sub len 1)
end
end.
(* Note: named exist (as in Coq library) rather than exists cause exists is a notation *)
Ltac2 exist (p : 'a -> bool) (a : 'a array) := exist_aux p a 0 (length a).
Ltac2 rec for_all_aux (p : 'a -> bool) (a : 'a array) (pos : int) (len : int) :=
match Int.equal len 0 with
| true => true
| false => match p (get a pos) with
| true => for_all_aux p a (Int.add pos 1) (Int.sub len 1)
| false => false
end
end.
Ltac2 for_all (p : 'a -> bool) (a : 'a array) := for_all_aux p a 0 (length a).
(* Note: we don't have (yet) a generic equality function in Ltac2 *)
Ltac2 mem (eq : 'a -> 'a -> bool) (x : 'a) (a : 'a array) :=
exist (eq x) a.
Ltac2 rec for_all2_aux (p : 'a -> 'b -> bool) (a : 'a array) (b : 'b array) (pos : int) (len : int) :=
if Int.equal len 0
then true
else if p (get a pos) (get b pos)
then for_all2_aux p a b (Int.add pos 1) (Int.sub len 1)
else false.
Ltac2 for_all2 p a b :=
let lena := length a in
let lenb := length b in
if Int.equal lena lenb
then for_all2_aux p a b 0 lena
else Control.throw_invalid_argument "Array.for_all2".
Ltac2 equal p a b :=
let lena := length a in
let lenb := length b in
if Int.equal lena lenb
then for_all2_aux p a b 0 lena
else false.
Ltac2 rev (ar : 'a array) : 'a array :=
let len := length ar in
init len (fun i => get ar (Int.sub (Int.sub len i) 1)).
|