1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * Copyright INRIA, CNRS and contributors *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* The interface is an extended version of OCaml stdlib/list.ml. *)
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
Require Import Ltac2.Init.
Require Ltac2.Int.
Require Ltac2.Control.
Require Ltac2.Bool.
Require Ltac2.Message.
Ltac2 rec length (ls : 'a list) :=
match ls with
| [] => 0
| _ :: xs => Int.add 1 (length xs)
end.
Ltac2 rec compare_lengths (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| []
=> match ls2 with
| [] => 0
| _ :: _ => -1
end
| _ :: ls1
=> match ls2 with
| [] => 1
| _ :: ls2 => compare_lengths ls1 ls2
end
end.
Ltac2 rec compare_length_with (ls : 'a list) (n : int) :=
match Int.lt n 0 with
| true => 1
| false
=> match ls with
| [] => Int.compare 0 n
| _ :: ls => compare_length_with ls (Int.sub n 1)
end
end.
Ltac2 cons (x : 'a) (xs : 'a list) :=
x :: xs.
(* Since Ltac-2 distinguishes between backtracking and fatal exceptions,
we provide option and default variants of functions which throw in the
OCaml stdlib. *)
Ltac2 hd_opt (ls : 'a list) :=
match ls with
| [] => None
| x :: _ => Some x
end.
Ltac2 hd (ls : 'a list) :=
match ls with
| [] => Control.throw_invalid_argument "List.hd"
| x :: _ => x
end.
Ltac2 tl (ls : 'a list) :=
match ls with
| [] => []
| _ :: xs => xs
end.
Ltac2 dest (xs : 'a list) : 'a * 'a list :=
match xs with
| x :: xs => (x, xs)
| [] => Control.throw_invalid_argument "List.dest: list empty"
end.
Ltac2 is_empty (xs : 'a list) : bool :=
match xs with
| _ :: _ => false
| _ => true
end.
Ltac2 rec last_opt (ls : 'a list) :=
match ls with
| [] => None
| x :: xs
=> match xs with
| [] => Some x
| _ :: _ => last_opt xs
end
end.
Ltac2 last (ls : 'a list) :=
match last_opt ls with
| None => Control.throw_invalid_argument "List.last"
| Some v => v
end.
Ltac2 rec removelast (ls : 'a list) :=
match ls with
| [] => []
| x :: xs
=> match xs with
| [] => []
| _ :: _ => x :: removelast xs
end
end.
Ltac2 rec nth_opt_aux (ls : 'a list) (n : int) :=
match ls with
| [] => None
| x :: xs
=> match Int.equal n 0 with
| true => Some x
| false => nth_opt_aux xs (Int.sub n 1)
end
end.
Ltac2 nth_opt (ls : 'a list) (n : int) :=
Control.assert_valid_argument "List.nth" (Int.ge n 0);
nth_opt_aux ls n.
Ltac2 nth (ls : 'a list) (n : int) :=
match nth_opt ls n with
| Some v => v
| None => Control.throw_out_of_bounds "List.nth"
end.
Ltac2 rec rev_append (l1 : 'a list) (l2 : 'a list) :=
match l1 with
| [] => l2
| a :: l => rev_append l (a :: l2)
end.
Ltac2 rev l := rev_append l [].
Ltac2 rec append ls1 ls2 :=
match ls1 with
| [] => ls2
| x :: xs => x :: append xs ls2
end.
Ltac2 rec concat (ls : 'a list list) :=
match ls with
| [] => []
| x :: xs => append x (concat xs)
end.
Ltac2 flatten (ls : 'a list list) := concat ls.
Ltac2 rec iter (f : 'a -> unit) (ls : 'a list) :=
match ls with
| [] => ()
| l :: ls => f l; iter f ls
end.
Ltac2 rec iteri_aux (i : int) (f : int -> 'a -> unit) (ls : 'a list) :=
match ls with
| [] => ()
| l :: ls => f i l; iteri_aux (Int.add i 1) f ls
end.
Ltac2 iteri (f : int -> 'a -> unit) (ls : 'a list) :=
iteri_aux 0 f ls.
Ltac2 rec map (f : 'a -> 'b) (ls : 'a list) :=
match ls with
| [] => []
| l :: ls => f l :: map f ls
end.
Ltac2 rec mapi_aux (i : int) (f : int -> 'a -> 'b) (ls : 'a list) :=
match ls with
| [] => []
| l :: ls => f i l :: mapi_aux (Int.add i 1) f ls
end.
Ltac2 mapi (f : int -> 'a -> 'b) (ls : 'a list) :=
mapi_aux 0 f ls.
Ltac2 rec flat_map (f : 'a -> 'b list) (xs : 'a list) :=
match xs with
| [] => []
| x :: xs => append (f x) (flat_map f xs)
end.
(* from the OCaml std lib *)
Ltac2 rev_map (f : 'a -> 'b) (ls : 'a list) :=
let rec rmap_f accu ls :=
match ls with
| [] => accu
| a::l => rmap_f (f a :: accu) l
end in
rmap_f [] ls.
Ltac2 rec fold_right (f : 'a -> 'b -> 'b) (ls : 'a list) (a : 'b) : 'b :=
match ls with
| [] => a
| l :: ls => f l (fold_right f ls a)
end.
Ltac2 rec fold_left (f : 'a -> 'b -> 'a) (a : 'a) (xs : 'b list) : 'a :=
match xs with
| [] => a
| x :: xs => fold_left f (f a x) xs
end.
Ltac2 fold_lefti (f : int -> 'a -> 'b -> 'a) (a : 'a) (xs : 'b list) : 'a :=
let rec go i a xs :=
match xs with
| [] => a
| x :: xs => go (Int.add i 1) (f i a x) xs
end
in go 0 a xs.
Ltac2 rec iter2 (f : 'a -> 'b -> unit) (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| []
=> match ls2 with
| [] => ()
| _ :: _ => Control.throw_invalid_argument "List.iter2"
end
| l1 :: ls1
=> match ls2 with
| [] => Control.throw_invalid_argument "List.iter2"
| l2 :: ls2
=> f l1 l2; iter2 f ls1 ls2
end
end.
Ltac2 rec map2 (f : 'a -> 'b -> 'c) (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| []
=> match ls2 with
| [] => []
| _ :: _ => Control.throw_invalid_argument "List.map2"
end
| l1 :: ls1
=> match ls2 with
| [] => Control.throw_invalid_argument "List.map2"
| l2 :: ls2
=> f l1 l2 :: map2 f ls1 ls2
end
end.
(* from the OCaml std lib *)
Ltac2 rev_map2 (f : 'a -> 'b -> 'c) (ls1 : 'a list) (ls2 : 'b list) :=
let rec rmap2_f accu ls1 ls2 :=
match ls1 with
| []
=> match ls2 with
| [] => accu
| _ :: _ => Control.throw_invalid_argument "List.rev_map2"
end
| l1 :: ls1
=> match ls2 with
| [] => Control.throw_invalid_argument "List.rev_map2"
| l2 :: ls2
=> rmap2_f (f l1 l2 :: accu) ls1 ls2
end
end in
rmap2_f [] ls1 ls2.
Ltac2 rec fold_right2 (f : 'a -> 'b -> 'c -> 'c) (ls1 : 'a list) (ls2 : 'b list) (a : 'c) :=
match ls1 with
| []
=> match ls2 with
| [] => a
| _ :: _ => Control.throw_invalid_argument "List.fold_right2"
end
| l1 :: ls1
=> match ls2 with
| [] => Control.throw_invalid_argument "List.fold_right2"
| l2 :: ls2
=> f l1 l2 (fold_right2 f ls1 ls2 a)
end
end.
Ltac2 rec fold_left2 (f : 'a -> 'b -> 'c -> 'a) (a : 'a) (ls1 : 'b list) (ls2 : 'c list) :=
match ls1 with
| []
=> match ls2 with
| [] => a
| _ :: _ => Control.throw_invalid_argument "List.fold_left2"
end
| l1 :: ls1
=> match ls2 with
| [] => Control.throw_invalid_argument "List.fold_left2"
| l2 :: ls2
=> fold_left2 f (f a l1 l2) ls1 ls2
end
end.
Ltac2 rec for_all f ls :=
match ls with
| [] => true
| x :: xs => match f x with
| true => for_all f xs
| false => false
end
end.
(* we would call this [exists] a la OCaml's [List.exists], but that's a syntax error, so instead we name it exist *)
Ltac2 rec exist f ls :=
match ls with
| [] => false
| x :: xs => match f x with
| true => true
| false => exist f xs
end
end.
Ltac2 rec for_all2_aux (on_length_mismatch : 'a list -> 'b list -> bool) f xs ys :=
match xs with
| [] => match ys with
| [] => true
| _ :: _ => on_length_mismatch xs ys
end
| x :: xs'
=> match ys with
| [] => on_length_mismatch xs ys
| y :: ys'
=> match f x y with
| true => for_all2_aux on_length_mismatch f xs' ys'
| false => false
end
end
end.
Ltac2 for_all2 f xs ys := for_all2_aux (fun _ _ => Control.throw_invalid_argument "List.for_all2") f xs ys.
Ltac2 equal f xs ys := for_all2_aux (fun _ _ => false) f xs ys.
Ltac2 rec exist2 f xs ys :=
match xs with
| [] => match ys with
| [] => false
| _ :: _ => Control.throw_invalid_argument "List.exist2"
end
| x :: xs'
=> match ys with
| [] => Control.throw_invalid_argument "List.exist2"
| y :: ys'
=> match f x y with
| true => true
| false => exist2 f xs' ys'
end
end
end.
Ltac2 rec find_opt f xs :=
match xs with
| [] => None
| x :: xs => match f x with
| true => Some x
| false => find_opt f xs
end
end.
Ltac2 find f xs :=
match find_opt f xs with
| Some v => v
| None => Control.throw Not_found
end.
Ltac2 rec find_rev_opt f xs :=
match xs with
| [] => None
| x :: xs => match find_rev_opt f xs with
| Some v => Some v
| None => match f x with
| true => Some x
| false => None
end
end
end.
Ltac2 find_rev f xs :=
match find_rev_opt f xs with
| Some v => v
| None => Control.throw Not_found
end.
Ltac2 mem (eq : 'a -> 'a -> bool) (a : 'a) (ls : 'a list) :=
exist (eq a) ls.
Ltac2 rec filter f xs :=
match xs with
| [] => []
| x :: xs
=> match f x with
| true => x :: filter f xs
| false => filter f xs
end
end.
Ltac2 rec filter_out f xs :=
filter (fun x => Bool.neg (f x)) xs.
Ltac2 find_all (f : 'a -> bool) (ls : 'a list) := filter f ls.
Ltac2 remove (eqb : 'a -> 'a -> bool) (x : 'a) (ls : 'a list) :=
filter_out (eqb x) ls.
Ltac2 count_occ (eqb : 'a -> 'a -> bool) (x : 'a) (ls : 'a list) :=
length (filter (eqb x) ls).
(* from the Coq stdlib *)
Ltac2 rec list_power (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| [] => [] :: []
| x :: t
=> flat_map (fun f => map (fun y => (x, y) :: f) ls2)
(list_power t ls2)
end.
Ltac2 rec partition (f : 'a -> bool) (l : 'a list) :=
match l with
| [] => ([], [])
| x :: tl
=> let (g, d) := partition f tl in
match f x with
| true => ((x::g), d)
| false => (g, (x::d))
end
end.
(* from the Coq stdlib *)
(** [list_prod] has the same signature as [combine], but unlike
[combine], it adds every possible pairs, not only those at the
same position. *)
Ltac2 rec list_prod (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| [] => []
| x :: t
=> append (map (fun y => (x, y)) ls2) (list_prod t ls2)
end.
Ltac2 rec firstn (n : int) (ls : 'a list) :=
Control.assert_valid_argument "List.firstn" (Int.ge n 0);
match Int.equal n 0 with
| true => []
| false
=> match ls with
| [] => Control.throw_out_of_bounds "List.firstn"
| x :: xs
=> x :: firstn (Int.sub n 1) xs
end
end.
Ltac2 rec skipn (n : int) (ls : 'a list) :=
Control.assert_valid_argument "List.skipn" (Int.ge n 0);
match Int.equal n 0 with
| true => ls
| false
=> match ls with
| [] => Control.throw_out_of_bounds "List.skipn"
| _ :: xs
=> skipn (Int.sub n 1) xs
end
end.
Ltac2 lastn (n : int) (ls : 'a list) :=
let l := length ls in
Control.assert_valid_argument "List.lastn" (Int.ge n 0);
Control.assert_bounds "List.lastn" (Int.le n l);
skipn (Int.sub l n) ls.
Ltac2 rec nodup (eqb : 'a -> 'a -> bool) (ls : 'a list) :=
match ls with
| [] => []
| x :: xs
=> match mem eqb x xs with
| true => nodup eqb xs
| false => x :: nodup eqb xs
end
end.
(* seq start 1 last = start :: start + 1 :: ... :: (last - 1) *)
Ltac2 rec seq (start : int) (step : int) (last : int) :=
match Int.lt (Int.sub last start) step with
| true
=> []
| false
=> start :: seq (Int.add start step) step last
end.
Ltac2 init (len : int) (f : int -> 'a) :=
Control.assert_valid_argument "List.init" (Int.ge len 0);
map f (seq 0 1 len).
Ltac2 repeat (x : 'a) (n : 'int) :=
init n (fun _ => x).
Ltac2 assoc (eqk : 'k -> 'k -> bool) (k : 'k) (l : ('k * 'v) list) :=
let eq_key kv := let (k', _) := kv in eqk k k' in
let (_, v) := find eq_key l in
v.
Ltac2 assoc_opt (eqk : 'k -> 'k -> bool) (k : 'k) (l : ('k * 'v) list) :=
let eq_key kv := let (k', _) := kv in eqk k k' in
match find_opt eq_key l with
| Some kv => let (_, v) := kv in Some v
| None => None
end.
Ltac2 mem_assoc (eqk : 'k -> 'k -> bool) (k : 'k) (l : ('k * 'v) list) :=
let eq_key kv := let (k', _) := kv in eqk k k' in
exist eq_key l.
Ltac2 remove_assoc (eqk : 'k -> 'k -> bool) (k : 'k) (l : ('k * 'v) list) :=
let eq_key kv := let (k', _) := kv in eqk k k' in
filter_out eq_key l.
Ltac2 rec split (ls : ('a * 'b) list) :=
match ls with
| [] => ([], [])
| xy :: tl
=> let (x, y) := xy in
let (left, right) := split tl in
((x::left), (y::right))
end.
Ltac2 rec combine (ls1 : 'a list) (ls2 : 'b list) :=
match ls1 with
| []
=> match ls2 with
| [] => []
| _ :: _ => Control.throw_invalid_argument "List.combine"
end
| x :: xs
=> match ls2 with
| y :: ys
=> (x, y) :: combine xs ys
| [] => Control.throw_invalid_argument "List.combine"
end
end.
Ltac2 enumerate (ls : 'a list) :=
combine (seq 0 1 (length ls)) ls.
(* from Coq stdlib *)
Ltac2 rec merge (cmp : 'a -> 'a -> int) (l1 : 'a list) (l2 : 'b list) :=
let rec merge_aux l2 :=
match l1 with
| [] => l2
| a1 :: l1'
=> match l2 with
| [] => l1
| a2 :: l2'
=> match Int.le (cmp a1 a2) 0 with
| true => a1 :: merge cmp l1' l2
| false => a2 :: merge_aux l2'
end
end
end in
merge_aux l2.
Ltac2 rec merge_list_to_stack cmp stack l :=
match stack with
| [] => [Some l]
| l' :: stack'
=> match l' with
| None => Some l :: stack'
| Some l'
=> None :: merge_list_to_stack cmp stack' (merge cmp l' l)
end
end.
Ltac2 rec merge_stack cmp stack :=
match stack with
| [] => []
| l :: stack'
=> match l with
| None => merge_stack cmp stack'
| Some l => merge cmp l (merge_stack cmp stack')
end
end.
Ltac2 rec iter_merge cmp stack l :=
match l with
| [] => merge_stack cmp stack
| a::l' => iter_merge cmp (merge_list_to_stack cmp stack [a]) l'
end.
Ltac2 sort cmp l := iter_merge cmp [] l.
(* TODO: maybe replace this with a faster implementation *)
Ltac2 sort_uniq (cmp : 'a -> 'a -> int) (l : 'a list) :=
let rec uniq l :=
match l with
| [] => []
| x1 :: xs
=> match xs with
| [] => x1 :: xs
| x2 :: _
=> match Int.equal (cmp x1 x2) 0 with
| true => uniq xs
| false => x1 :: uniq xs
end
end
end in
uniq (sort cmp l).
Ltac2 inclusive_range (lb : int) (ub : int) : int list :=
let rec go lb ub :=
if Int.gt lb ub then [] else lb :: go (Int.add lb 1) ub
in
go lb ub.
Ltac2 range (lb : int) (ub : int) : int list :=
inclusive_range lb (Int.sub ub 1).
(** [concat_rev [x1; ..; xN-1; xN]] computes [rev xN ++ rev xN-1 ++ .. x1].
Note that [x1] is not reversed and appears in its original order.
[concat_rev] is faster than [concat] and should be preferred over [concat]
when the order of items does not matter. *)
Ltac2 concat_rev (ls : 'a list list) : 'a list :=
let rec go ls acc :=
match ls with
| [] => acc
| l :: ls => go ls (rev_append l acc)
end
in
match ls with
| [] => []
| l :: ls => go ls l
end.
Ltac2 rec map_filter (f : 'a -> 'b option) (l : 'a list) : 'b list :=
match l with
| [] => []
| x :: l =>
match f x with
| Some y => y :: map_filter f l
| None => map_filter f l
end
end.
|