1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
Require Import Orders OrdersTac OrdersFacts Setoid Morphisms Basics.
(** * A Generic construction of min and max *)
(** ** First, an interface for types with [max] and/or [min] *)
Module Type HasMax (Import E:EqLe').
Parameter Inline max : t -> t -> t.
Parameter max_l : forall x y, y<=x -> max x y == x.
Parameter max_r : forall x y, x<=y -> max x y == y.
End HasMax.
Module Type HasMin (Import E:EqLe').
Parameter Inline min : t -> t -> t.
Parameter min_l : forall x y, x<=y -> min x y == x.
Parameter min_r : forall x y, y<=x -> min x y == y.
End HasMin.
Module Type HasMinMax (E:EqLe) := HasMax E <+ HasMin E.
(** ** Any [OrderedTypeFull] can be equipped by [max] and [min]
based on the compare function. *)
Definition gmax {A} (cmp : A->A->comparison) x y :=
match cmp x y with Lt => y | _ => x end.
Definition gmin {A} (cmp : A->A->comparison) x y :=
match cmp x y with Gt => y | _ => x end.
Module GenericMinMax (Import O:OrderedTypeFull') <: HasMinMax O.
Definition max := gmax O.compare.
Definition min := gmin O.compare.
Lemma ge_not_lt : forall x y, y<=x -> x<y -> False.
Proof.
intros x y H H'.
apply (StrictOrder_Irreflexive x).
rewrite le_lteq in *; destruct H as [H|H].
transitivity y; auto.
rewrite H in H'; auto.
Qed.
Lemma max_l : forall x y, y<=x -> max x y == x.
Proof.
intros. unfold max, gmax. case compare_spec; auto with relations.
intros; elim (ge_not_lt x y); auto.
Qed.
Lemma max_r : forall x y, x<=y -> max x y == y.
Proof.
intros. unfold max, gmax. case compare_spec; auto with relations.
intros; elim (ge_not_lt y x); auto.
Qed.
Lemma min_l : forall x y, x<=y -> min x y == x.
Proof.
intros. unfold min, gmin. case compare_spec; auto with relations.
intros; elim (ge_not_lt y x); auto.
Qed.
Lemma min_r : forall x y, y<=x -> min x y == y.
Proof.
intros. unfold min, gmin. case compare_spec; auto with relations.
intros; elim (ge_not_lt x y); auto.
Qed.
End GenericMinMax.
(** ** Consequences of the minimalist interface: facts about [max]. *)
Module MaxLogicalProperties (Import O:TotalOrder')(Import M:HasMax O).
Module Import T := !MakeOrderTac O.
(** An alternative caracterisation of [max], equivalent to
[max_l /\ max_r] *)
Lemma max_spec : forall n m,
(n < m /\ max n m == m) \/ (m <= n /\ max n m == n).
Proof.
intros n m.
destruct (lt_total n m); [left|right].
split; auto. apply max_r. rewrite le_lteq; auto.
assert (m <= n) by (rewrite le_lteq; intuition).
split; auto. apply max_l; auto.
Qed.
(** A more symmetric version of [max_spec], based only on [le].
Beware that left and right alternatives overlap. *)
Lemma max_spec_le : forall n m,
(n <= m /\ max n m == m) \/ (m <= n /\ max n m == n).
Proof.
intros. destruct (max_spec n m); [left|right]; intuition; order.
Qed.
Instance : Proper (eq==>eq==>iff) le.
Proof. repeat red. intuition order. Qed.
Instance max_compat : Proper (eq==>eq==>eq) max.
Proof.
intros x x' Hx y y' Hy.
assert (H1 := max_spec x y). assert (H2 := max_spec x' y').
set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'.
rewrite <- Hx, <- Hy in *.
destruct (lt_total x y); intuition order.
Qed.
(** A function satisfying the same specification is equal to [max]. *)
Lemma max_unicity : forall n m p,
((n < m /\ p == m) \/ (m <= n /\ p == n)) -> p == max n m.
Proof.
intros. assert (Hm := max_spec n m).
destruct (lt_total n m); intuition; order.
Qed.
Lemma max_unicity_ext : forall f,
(forall n m, (n < m /\ f n m == m) \/ (m <= n /\ f n m == n)) ->
(forall n m, f n m == max n m).
Proof.
intros. apply max_unicity; auto.
Qed.
(** [max] commutes with monotone functions. *)
Lemma max_mono: forall f,
(Proper (eq ==> eq) f) ->
(Proper (le ==> le) f) ->
forall x y, max (f x) (f y) == f (max x y).
Proof.
intros f Eqf Lef x y.
destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
assert (f x <= f y) by (apply Lef; order). order.
assert (f y <= f x) by (apply Lef; order). order.
Qed.
(** *** Semi-lattice algebraic properties of [max] *)
Lemma max_id : forall n, max n n == n.
Proof.
intros. destruct (max_spec n n); intuition.
Qed.
Notation max_idempotent := max_id (only parsing).
Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p.
Proof.
intros.
destruct (max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq.
destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'.
destruct (max_spec m p); intuition; order. order.
destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. order.
destruct (max_spec m p); intuition; order.
Qed.
Lemma max_comm : forall n m, max n m == max m n.
Proof.
intros.
destruct (max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq.
destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
Qed.
(** *** Least-upper bound properties of [max] *)
Lemma le_max_l : forall n m, n <= max n m.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma le_max_r : forall n m, m <= max n m.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_l_iff : forall n m, max n m == n <-> m <= n.
Proof.
split. intro H; rewrite <- H. apply le_max_r. apply max_l.
Qed.
Lemma max_r_iff : forall n m, max n m == m <-> n <= m.
Proof.
split. intro H; rewrite <- H. apply le_max_l. apply max_r.
Qed.
Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m.
Proof.
intros n m p H; destruct (max_spec n m);
[right|left]; intuition; order.
Qed.
Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m.
Proof.
intros. split. apply max_le.
destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m.
Proof.
intros. destruct (max_spec n m); intuition;
order || (right; order) || (left; order).
Qed.
Lemma max_lub_l : forall n m p, max n m <= p -> n <= p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lub_r : forall n m p, max n m <= p -> m <= p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p.
Proof.
intros; destruct (max_spec n m); intuition; order.
Qed.
Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m.
Proof.
intros.
destruct (max_spec p n) as [(LT,E)|(LE,E)]; rewrite E.
assert (LE' := le_max_r p m). order.
apply le_max_l.
Qed.
Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p.
Proof.
intros. rewrite (max_comm n p), (max_comm m p).
auto using max_le_compat_l.
Qed.
Lemma max_le_compat : forall n m p q, n <= m -> p <= q ->
max n p <= max m q.
Proof.
intros n m p q Hnm Hpq.
assert (LE := max_le_compat_l _ _ m Hpq).
assert (LE' := max_le_compat_r _ _ p Hnm).
order.
Qed.
End MaxLogicalProperties.
(** ** Properties concernant [min], then both [min] and [max].
To avoid too much code duplication, we exploit that [min] can be
seen as a [max] of the reversed order.
*)
Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O).
Include MaxLogicalProperties O M.
Import T.
Module ORev := TotalOrderRev O.
Module MRev <: HasMax ORev.
Definition max x y := M.min y x.
Definition max_l x y := M.min_r y x.
Definition max_r x y := M.min_l y x.
End MRev.
Module MPRev := MaxLogicalProperties ORev MRev.
Instance min_compat : Proper (eq==>eq==>eq) min.
Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed.
Lemma min_spec : forall n m,
(n < m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. intros. exact (MPRev.max_spec m n). Qed.
Lemma min_spec_le : forall n m,
(n <= m /\ min n m == n) \/ (m <= n /\ min n m == m).
Proof. intros. exact (MPRev.max_spec_le m n). Qed.
Lemma min_mono: forall f,
(Proper (eq ==> eq) f) ->
(Proper (le ==> le) f) ->
forall x y, min (f x) (f y) == f (min x y).
Proof.
intros. apply MPRev.max_mono; auto. compute in *; eauto.
Qed.
Lemma min_unicity : forall n m p,
((n < m /\ p == n) \/ (m <= n /\ p == m)) -> p == min n m.
Proof. intros n m p. apply MPRev.max_unicity. Qed.
Lemma min_unicity_ext : forall f,
(forall n m, (n < m /\ f n m == n) \/ (m <= n /\ f n m == m)) ->
(forall n m, f n m == min n m).
Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed.
Lemma min_id : forall n, min n n == n.
Proof. intros. exact (MPRev.max_id n). Qed.
Notation min_idempotent := min_id (only parsing).
Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p.
Proof. intros. symmetry; apply MPRev.max_assoc. Qed.
Lemma min_comm : forall n m, min n m == min m n.
Proof. intros. exact (MPRev.max_comm m n). Qed.
Lemma le_min_r : forall n m, min n m <= m.
Proof. intros. exact (MPRev.le_max_l m n). Qed.
Lemma le_min_l : forall n m, min n m <= n.
Proof. intros. exact (MPRev.le_max_r m n). Qed.
Lemma min_l_iff : forall n m, min n m == n <-> n <= m.
Proof. intros n m. exact (MPRev.max_r_iff m n). Qed.
Lemma min_r_iff : forall n m, min n m == m <-> m <= n.
Proof. intros n m. exact (MPRev.max_l_iff m n). Qed.
Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p.
Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed.
Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p.
Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed.
Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p.
Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed.
Lemma min_glb_l : forall n m p, p <= min n m -> p <= n.
Proof. intros n m. exact (MPRev.max_lub_r m n). Qed.
Lemma min_glb_r : forall n m p, p <= min n m -> p <= m.
Proof. intros n m. exact (MPRev.max_lub_l m n). Qed.
Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m.
Proof. intros. apply MPRev.max_lub; auto. Qed.
Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m.
Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed.
Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m.
Proof. intros. apply MPRev.max_lub_lt; auto. Qed.
Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m.
Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed.
Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m.
Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed.
Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p.
Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed.
Lemma min_le_compat : forall n m p q, n <= m -> p <= q ->
min n p <= min m q.
Proof. intros. apply MPRev.max_le_compat; auto. Qed.
(** *** Combined properties of min and max *)
Lemma min_max_absorption : forall n m, max n (min n m) == n.
Proof.
intros.
destruct (min_spec n m) as [(C,E)|(C,E)]; rewrite E.
apply max_l. order.
destruct (max_spec n m); intuition; order.
Qed.
Lemma max_min_absorption : forall n m, min n (max n m) == n.
Proof.
intros.
destruct (max_spec n m) as [(C,E)|(C,E)]; rewrite E.
destruct (min_spec n m) as [(C',E')|(C',E')]; auto. order.
apply min_l; auto. order.
Qed.
(** Distributivity *)
Lemma max_min_distr : forall n m p,
max n (min m p) == min (max n m) (max n p).
Proof.
intros. symmetry. apply min_mono.
eauto with *.
repeat red; intros. apply max_le_compat_l; auto.
Qed.
Lemma min_max_distr : forall n m p,
min n (max m p) == max (min n m) (min n p).
Proof.
intros. symmetry. apply max_mono.
eauto with *.
repeat red; intros. apply min_le_compat_l; auto.
Qed.
(** Modularity *)
Lemma max_min_modular : forall n m p,
max n (min m (max n p)) == min (max n m) (max n p).
Proof.
intros. rewrite <- max_min_distr.
destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'.
rewrite 2 max_l; try order. rewrite min_le_iff; auto.
rewrite 2 max_l; try order. rewrite min_le_iff; auto.
Qed.
Lemma min_max_modular : forall n m p,
min n (max m (min n p)) == max (min n m) (min n p).
Proof.
intros. rewrite <- min_max_distr.
destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'.
rewrite 2 min_l; try order. rewrite max_le_iff; right; order.
rewrite 2 min_l; try order. rewrite max_le_iff; auto.
Qed.
(** Disassociativity *)
Lemma max_min_disassoc : forall n m p,
min n (max m p) <= max (min n m) p.
Proof.
intros. rewrite min_max_distr.
auto using max_le_compat_l, le_min_r.
Qed.
(** Anti-monotonicity swaps the role of [min] and [max] *)
Lemma max_min_antimono : forall f,
Proper (eq==>eq) f ->
Proper (le==>inverse le) f ->
forall x y, max (f x) (f y) == f (min x y).
Proof.
intros f Eqf Lef x y.
destruct (min_spec x y) as [(H,E)|(H,E)]; rewrite E;
destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
assert (f y <= f x) by (apply Lef; order). order.
assert (f x <= f y) by (apply Lef; order). order.
Qed.
Lemma min_max_antimono : forall f,
Proper (eq==>eq) f ->
Proper (le==>inverse le) f ->
forall x y, min (f x) (f y) == f (max x y).
Proof.
intros f Eqf Lef x y.
destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
destruct (min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
assert (f y <= f x) by (apply Lef; order). order.
assert (f x <= f y) by (apply Lef; order). order.
Qed.
End MinMaxLogicalProperties.
(** ** Properties requiring a decidable order *)
Module MinMaxDecProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).
(** Induction principles for [max]. *)
Lemma max_case_strong : forall n m (P:t -> Type),
(forall x y, x==y -> P x -> P y) ->
(m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
Proof.
intros n m P Compat Hl Hr.
destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
assert (m<=n) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply max_l; auto.
Defined.
Lemma max_case : forall n m (P:t -> Type),
(forall x y, x == y -> P x -> P y) ->
P n -> P m -> P (max n m).
Proof. intros. apply max_case_strong; auto. Defined.
(** [max] returns one of its arguments. *)
Lemma max_dec : forall n m, {max n m == n} + {max n m == m}.
Proof.
intros n m. apply max_case; auto with relations.
intros x y H [E|E]; [left|right]; rewrite <-H; auto.
Defined.
(** Idem for [min] *)
Lemma min_case_strong : forall n m (P:O.t -> Type),
(forall x y, x == y -> P x -> P y) ->
(n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
Proof.
intros n m P Compat Hl Hr.
destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
assert (n<=m) by (rewrite le_lteq; auto).
apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
assert (m<=n) by (rewrite le_lteq; auto).
apply (Compat m), Hr; auto. symmetry; apply min_r; auto.
Defined.
Lemma min_case : forall n m (P:O.t -> Type),
(forall x y, x == y -> P x -> P y) ->
P n -> P m -> P (min n m).
Proof. intros. apply min_case_strong; auto. Defined.
Lemma min_dec : forall n m, {min n m == n} + {min n m == m}.
Proof.
intros. apply min_case; auto with relations.
intros x y H [E|E]; [left|right]; rewrite <- E; auto with relations.
Defined.
End MinMaxDecProperties.
Module MinMaxProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).
Module OT := OTF_to_TotalOrder O.
Include MinMaxLogicalProperties OT M.
Include MinMaxDecProperties O M.
Definition max_l := max_l.
Definition max_r := max_r.
Definition min_l := min_l.
Definition min_r := min_r.
Notation max_monotone := max_mono.
Notation min_monotone := min_mono.
Notation max_min_antimonotone := max_min_antimono.
Notation min_max_antimonotone := min_max_antimono.
End MinMaxProperties.
(** ** When the equality is Leibniz, we can skip a few [Proper] precondition. *)
Module UsualMinMaxLogicalProperties
(Import O:UsualTotalOrder')(Import M:HasMinMax O).
Include MinMaxLogicalProperties O M.
Lemma max_monotone : forall f, Proper (le ==> le) f ->
forall x y, max (f x) (f y) = f (max x y).
Proof. intros; apply max_mono; auto. congruence. Qed.
Lemma min_monotone : forall f, Proper (le ==> le) f ->
forall x y, min (f x) (f y) = f (min x y).
Proof. intros; apply min_mono; auto. congruence. Qed.
Lemma min_max_antimonotone : forall f, Proper (le ==> inverse le) f ->
forall x y, min (f x) (f y) = f (max x y).
Proof. intros; apply min_max_antimono; auto. congruence. Qed.
Lemma max_min_antimonotone : forall f, Proper (le ==> inverse le) f ->
forall x y, max (f x) (f y) = f (min x y).
Proof. intros; apply max_min_antimono; auto. congruence. Qed.
End UsualMinMaxLogicalProperties.
Module UsualMinMaxDecProperties
(Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
Module P := MinMaxDecProperties O M.
Lemma max_case_strong : forall n m (P:t -> Type),
(m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
Proof. intros; apply P.max_case_strong; auto. congruence. Defined.
Lemma max_case : forall n m (P:t -> Type),
P n -> P m -> P (max n m).
Proof. intros; apply max_case_strong; auto. Defined.
Lemma max_dec : forall n m, {max n m = n} + {max n m = m}.
Proof. exact P.max_dec. Defined.
Lemma min_case_strong : forall n m (P:O.t -> Type),
(n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
Proof. intros; apply P.min_case_strong; auto. congruence. Defined.
Lemma min_case : forall n m (P:O.t -> Type),
P n -> P m -> P (min n m).
Proof. intros. apply min_case_strong; auto. Defined.
Lemma min_dec : forall n m, {min n m = n} + {min n m = m}.
Proof. exact P.min_dec. Defined.
End UsualMinMaxDecProperties.
Module UsualMinMaxProperties
(Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
Module OT := OTF_to_TotalOrder O.
Include UsualMinMaxLogicalProperties OT M.
Include UsualMinMaxDecProperties O M.
Definition max_l := max_l.
Definition max_r := max_r.
Definition min_l := min_l.
Definition min_r := min_r.
End UsualMinMaxProperties.
(** From [TotalOrder] and [HasMax] and [HasEqDec], we can prove
that the order is decidable and build an [OrderedTypeFull]. *)
Module TOMaxEqDec_to_Compare
(Import O:TotalOrder')(Import M:HasMax O)(Import E:HasEqDec O) <: HasCompare O.
Definition compare x y :=
if eq_dec x y then Eq
else if eq_dec (M.max x y) y then Lt else Gt.
Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
Proof.
intros; unfold compare; repeat destruct eq_dec; auto; constructor.
destruct (lt_total x y); auto.
absurd (x==y); auto. transitivity (max x y); auto.
symmetry. apply max_l. rewrite le_lteq; intuition.
destruct (lt_total y x); auto.
absurd (max x y == y); auto. apply max_r; rewrite le_lteq; intuition.
Qed.
End TOMaxEqDec_to_Compare.
Module TOMaxEqDec_to_OTF (O:TotalOrder)(M:HasMax O)(E:HasEqDec O)
<: OrderedTypeFull
:= O <+ E <+ TOMaxEqDec_to_Compare O M E.
(** TODO: Some Remaining questions...
--> Compare with a type-classes version ?
--> Is max_unicity and max_unicity_ext really convenient to express
that any possible definition of max will in fact be equivalent ?
--> Is it possible to avoid copy-paste about min even more ?
*)
|