1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
Require Export RelationPairs SetoidList Orders.
Set Implicit Arguments.
Unset Strict Implicit.
(** * Specialization of results about lists modulo. *)
Module OrderedTypeLists (Import O:OrderedType).
Section ForNotations.
Notation In:=(InA eq).
Notation Inf:=(lelistA lt).
Notation Sort:=(sort lt).
Notation NoDup:=(NoDupA eq).
Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
Proof. intros. rewrite <- H; auto. Qed.
Lemma ListIn_In : forall l x, List.In x l -> In x l.
Proof. exact (In_InA eq_equiv). Qed.
Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l.
Proof. exact (InfA_ltA lt_strorder). Qed.
Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l.
Proof. exact (InfA_eqA eq_equiv lt_strorder lt_compat). Qed.
Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x.
Proof. exact (SortA_InfA_InA eq_equiv lt_strorder lt_compat). Qed.
Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l.
Proof. exact (@In_InfA t lt). Qed.
Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l.
Proof. exact (InA_InfA eq_equiv (ltA:=lt)). Qed.
Lemma Inf_alt :
forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)).
Proof. exact (InfA_alt eq_equiv lt_strorder lt_compat). Qed.
Lemma Sort_NoDup : forall l, Sort l -> NoDup l.
Proof. exact (SortA_NoDupA eq_equiv lt_strorder lt_compat) . Qed.
End ForNotations.
Hint Resolve ListIn_In Sort_NoDup Inf_lt.
Hint Immediate In_eq Inf_lt.
End OrderedTypeLists.
(** * Results about keys and data as manipulated in FMaps. *)
Module KeyOrderedType(Import O:OrderedType).
Module Import MO:=OrderedTypeLists(O).
Section Elt.
Variable elt : Type.
Notation key:=t.
Local Open Scope signature_scope.
Definition eqk : relation (key*elt) := eq @@1.
Definition eqke : relation (key*elt) := eq * Logic.eq.
Definition ltk : relation (key*elt) := lt @@1.
Hint Unfold eqk eqke ltk.
(* eqke is stricter than eqk *)
Global Instance eqke_eqk : subrelation eqke eqk.
Proof. firstorder. Qed.
(* eqk, eqke are equalities, ltk is a strict order *)
Global Instance eqk_equiv : Equivalence eqk.
Global Instance eqke_equiv : Equivalence eqke.
Global Instance ltk_strorder : StrictOrder ltk.
Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
Proof. unfold eqk, ltk; auto with *. Qed.
(* Additionnal facts *)
Global Instance pair_compat : Proper (eq==>Logic.eq==>eqke) (@pair key elt).
Proof. apply pair_compat. Qed.
Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
Proof.
intros e e' LT EQ; rewrite EQ in LT.
elim (StrictOrder_Irreflexive _ LT).
Qed.
Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
Proof.
intros e e' LT EQ; rewrite EQ in LT.
elim (StrictOrder_Irreflexive _ LT).
Qed.
Lemma InA_eqke_eqk :
forall x m, InA eqke x m -> InA eqk x m.
Proof.
unfold eqke, RelProd; induction 1; firstorder.
Qed.
Hint Resolve InA_eqke_eqk.
Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
Definition In k m := exists e:elt, MapsTo k e m.
Notation Sort := (sort ltk).
Notation Inf := (lelistA ltk).
Hint Unfold MapsTo In.
(* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)
Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
Proof.
firstorder.
exists x; auto.
induction H.
destruct y; compute in H.
exists e; left; auto.
destruct IHInA as [e H0].
exists e; auto.
Qed.
Lemma In_alt2 : forall k l, In k l <-> Exists (fun p => eq k (fst p)) l.
Proof.
unfold In, MapsTo.
setoid_rewrite Exists_exists; setoid_rewrite InA_alt.
firstorder.
exists (snd x), x; auto.
Qed.
Lemma In_nil : forall k, In k nil <-> False.
Proof.
intros; rewrite In_alt2; apply Exists_nil.
Qed.
Lemma In_cons : forall k p l,
In k (p::l) <-> eq k (fst p) \/ In k l.
Proof.
intros; rewrite !In_alt2, Exists_cons; intuition.
Qed.
Global Instance MapsTo_compat :
Proper (eq==>Logic.eq==>equivlistA eqke==>iff) MapsTo.
Proof.
intros x x' Hx e e' He l l' Hl. unfold MapsTo.
rewrite Hx, He, Hl; intuition.
Qed.
Global Instance In_compat : Proper (eq==>equivlistA eqk==>iff) In.
Proof.
intros x x' Hx l l' Hl. rewrite !In_alt.
setoid_rewrite Hl. setoid_rewrite Hx. intuition.
Qed.
Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
Proof. intros l x y e EQ. rewrite <- EQ; auto. Qed.
Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
Proof. intros l x y EQ. rewrite <- EQ; auto. Qed.
Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
Proof. intros l x x' H. rewrite H; auto. Qed.
Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
Proof. apply InfA_ltA; auto with *. Qed.
Hint Immediate Inf_eq.
Hint Resolve Inf_lt.
Lemma Sort_Inf_In :
forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
Proof. apply SortA_InfA_InA; auto with *. Qed.
Lemma Sort_Inf_NotIn :
forall l k e, Sort l -> Inf (k,e) l -> ~In k l.
Proof.
intros; red; intros.
destruct H1 as [e' H2].
elim (@ltk_not_eqk (k,e) (k,e')).
eapply Sort_Inf_In; eauto.
repeat red; reflexivity.
Qed.
Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l.
Proof. apply SortA_NoDupA; auto with *. Qed.
Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
Proof.
intros; invlist sort; eapply Sort_Inf_In; eauto.
Qed.
Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
ltk e e' \/ eqk e e'.
Proof.
intros; invlist InA; auto with relations.
left; apply Sort_In_cons_1 with l; auto with relations.
Qed.
Lemma Sort_In_cons_3 :
forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
Proof.
intros; invlist sort; red; intros.
eapply Sort_Inf_NotIn; eauto using In_eq.
Qed.
Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
Proof.
intros; invlist In; invlist MapsTo. compute in * |- ; intuition.
right; exists x; auto.
Qed.
Lemma In_inv_2 : forall k k' e e' l,
InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
Proof.
intros; invlist InA; intuition.
Qed.
Lemma In_inv_3 : forall x x' l,
InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
Proof.
intros; invlist InA; compute in * |- ; intuition.
Qed.
End Elt.
Hint Unfold eqk eqke ltk.
Hint Extern 2 (eqke ?a ?b) => split.
Hint Resolve ltk_not_eqk ltk_not_eqke.
Hint Resolve InA_eqke_eqk.
Hint Unfold MapsTo In.
Hint Immediate Inf_eq.
Hint Resolve Inf_lt.
Hint Resolve Sort_Inf_NotIn.
Hint Resolve In_inv_2 In_inv_3.
End KeyOrderedType.
|